clc; //Example 24.2 //page no 352 printf("Example 24.2 page no 352\n\n"); //refer to example 24.1 m_f=40//mass of fluid,kg rho_f=998//density of water,kg/m^3 V_f=m_f/rho_f//volume of the fluid,m^3 m_s=60//mass of solid,kg rho_p=2467//density of glass,kg/m^3 V_s=m_s/rho_p//volume of glass,m^3 V = V_f + V_s//total volume,m^3 v_frac_f = V_f/V//volume fraction for the fluid particles printf("\n volume fraction fluid particles v_frac_f =%f ",v_frac_f); v_frac_p=1-v_frac_f//volume fraction for the glass particles printf("\n volume fraction for the glass particles v_frac_p=%f ",v_frac_p); rho_m=round(v_frac_f*rho_f + v_frac_p*rho_p)//bulk density of slurry printf("\n bulk density of slurry rho_m=%f kg/m^3 ",rho_m); b=10^(1.82*(1-v_frac_f))//dimensionless correction factor g=9.807//gravitational acc.,m/s^2 D_p=0.0001554//diameter of particle,m meu_f=0.001//viscosity of fluid v_t = g*D_p^2*(rho_p-rho_f)*v_frac_f^2/(18*meu_f*b)//terminal velocity printf("\n terminal velocity v_t=%f m/s",v_t); meu_m = meu_f*b//effective mixture viscosity printf("\n effective mixture viscosity meu_m=%f kg/m.s",meu_m); R_e=rho_m*v_t*D_p/(meu_m*v_frac_f)//reynolds no. printf("\n reynolds no R_e=%f ",R_e);