//Example 3.14 //calculate the optimum thickness. //Given Ti=172 //C, saturation temp. To=20 //C, ambient temp. Cs=700 //per ton, cost of steam Lv=487 //kcal/kg, latent heat of steam ho=10.32 //kcal/h m^2 C, outer heat transfer coefficient kc=0.031 //W/m C, thermal conductivity of insulation n=5 //yr, service life of insulation i=0.18 //Re/(yr)(Re), interest rate //Calculation di=0.168 //m, inner diameter of insulation //Cost of insulation Ci=17360-(1.91*10^4)*di //Rs/m^3 Ch=Cs/(1000*Lv) //Rs/cal, cost of heat energy in steam sm=1/(1+i)+1/(1+i)^2+1/(1+i)^3+1/(1+i)^4+1/(1+i)^n //from eq. 3.33 ri=di/2 //m inner radius of insulation L=1 //m, length of pipe //Pt=Ch*sm*2*%pi*ri*L*( 1/(((ri/kc)*('log(ro/ri)'))+ri/(ho*ro)))*7.2*10^3*(Ti-To)+%pi*(ro^2-ri^2)*L*Ci //On differentiating , dpt/dro=-957.7*((1/ro)-(0.003/ro^2))/(log(ro)+(0.003/ro)+2.477)^2 deff('[x]=f(ro)','x=-957.7*((1/ro)-(0.003/ro^2))/(log(ro)+(0.003/ro)+2.477)^2+98960*ro') ro=fsolve(0.1,f) t=ro-ri printf("The optimum insulation thickness is %f mm",t*1000)