//Harriot P.,2003,Chemical Reactor Design (I-Edition) Marcel Dekker,Inc.,USA,pp 436 //Chapter-7 Ex7.5 Pg No.293 //Title:Maximum rate of CO absorption and Dimensions of Bubble Column Reactor //=========================================================================================================== clear clc // COMMON INPUT P_dash=5;//Partial pressure of acetic acid (atm) P_total=20;//Total Pressure (atm) myu=0.19;// Viscosity of acetic acid T_C=180;//Temperature in (°C) T_K=T_C+273;//Temperature in (K) sigma_20=28;//Surface Tension(Dynes/cm) at 20 (°C) sigma_180=20;//Surface Tension (Dynes/cm)at 180 (°C) M_CO=28;//Molecular weight of CO M_B=60.05;//Molecular weight acetic acid V_A= 30.7;//Molar volume S_CO=7*10^(-3);//Solubility of CO (mol/L atm) f_CO=0.75;//Fraction of CO in feed f_acetic_acid=1-f_CO;//Fraction of Acetic acid R=82.056*(10^-3);//(cm3 atm/ K  mol) rho_air=1.21;//(kg/m3)density of air at 20 (°C) sigma_H2O=72;//Surface tension (Dynes/cm) myu_H2O=1;//Viscosity of water k_L_a_air_water=0.051;//(sec-1) D_O2_water=2.4*(10^-5);//(cm2/sec)diffusivity for oxygen in waterat 20(°C) Conc_Rh=4*10^(-3);//Concentration of Rohdium(M) Conc_CH3I=1;//Concentration of Methyl Iodide(M) F_product_acetic_acid=0.1;// Rate of acetic acid produced (kmol/sec) f_CO_reacted=0.8;//80% of CO reacted u_g=0.1;//(m/sec) Epsilon_air_water_new=0.07;//At velocity 3(cm/sec) Epsilon_air_water_old= 0.12;//At velocity 6(cm/sec) u_g_c=5*(10^(-2));//Gas Velocity Ex7.5.c(m/sec) //CALCUATION (Ex7.5.a) D_CO=(7.4*10^(-8)*M_B^(1/2)*T_K)/(myu*V_A^(0.6));//Diffusivity of CO (Wilke–Chang equation Eq4.17) M_ave=f_CO*M_CO+M_B*f_acetic_acid;//Average Molecular weight rho_g=M_ave*P_total/(R*T_K);//From ideal gas law epsilon_air_water= 0.12;//At velocity 6(cm/sec) epsilon=epsilon_air_water*(sigma_H2O/sigma_180)^(0.4)*(myu/myu_H2O)^(0.2)*(rho_g/rho_air)^(0.2);//From equation 7.64 u_G=6;//From figure 7.12(cm/sec) k_L_a=k_L_a_air_water*(D_CO/D_O2_water)^(0.5)*(epsilon/epsilon_air_water);//From equation 7.69 P_CO=P_total-P_dash; C_CO_Star=S_CO*P_CO; r_max=C_CO_Star*k_L_a;//Rate of CO absorption at 15 atm r_test=158.8*(10^(6))*exp(-8684/T_K)*(Conc_Rh)*(Conc_CH3I);//Kinetic rate at 180 (°C) //CALCULATION(Ex7.5.b) F_feed_CO=F_product_acetic_acid/f_CO_reacted;//Rate of flow of CO (kmol/sec) F_total=F_feed_CO/f_CO; Q=F_total*R*T_K/(P_total); S=Q/u_g; D_t=sqrt(4*S/%pi); r_test_b=(158.8*(10^(6))*exp(-8684/T_K)*(Conc_Rh)*(Conc_CH3I))*(10^(-3));//Kinetic rate at 180 (°C) liquid_vol= (F_product_acetic_acid/r_test_b)*(10^(-3));//liquid volume (m3) h0=liquid_vol/S;//clear liquid h=h0/(1-epsilon);//aerated liquid //CALCULATION(Ex7.5.c) Q=F_total*R*T_K/(P_total); S=Q/u_g_c; D_t_c=sqrt(4*S/%pi); Epsilon_new=(Epsilon_air_water_new/Epsilon_air_water_old)*epsilon; liquid_vol= (F_product_acetic_acid/r_test_b)*(10^(-3));//liquid volume (m3) h0=liquid_vol/S;//clear liquid h_new=h0/(1-Epsilon_new);//aerated liquid //OUTPUT (Ex7.5.a) mprintf('\n OUTPUT Ex7.5.a'); mprintf('\n=========================================================='); mprintf('\n\tThe maximum rate of CO absorption at 15 atm : %f (mol/L s)',r_max); mprintf('\n\tThe kinetic rate of CO absorption at 180(°C) : %f (mol/L s)',r_test); mprintf('\n\tThe predicted value of k_L_a : %0.2f (s-1)',k_L_a); //OUTPUT (Ex7.5.b) mprintf('\n\n\n OUTPUT Ex7.5.b'); mprintf('\n=========================================================='); mprintf('\n\tThe Dimensions of the reactor are '); mprintf('\n\tDiameter:%0.0f m',D_t); mprintf('\n\tHeight:%0.2f m',h); //OUTPUT (Ex7.5.c) mprintf('\n\n\n OUTPUT Ex7.5.c'); mprintf('\n=========================================================='); mprintf('\n\tThe new dimensions of the reactor'); mprintf('\n\tDiameter:%0.1f m',D_t_c); mprintf('\n\tHeight:%0.1f m',h_new); //FILE OUTPUT fid= mopen('.\Chapter7-Ex5-Output.txt','w'); mfprintf(fid,'\n OUTPUT Ex7.5.a'); mfprintf(fid,'\n=========================================================='); mfprintf(fid,'\n\tThe maximum rate of CO absorption at 15 atm : %f (mol/L s)',r_max); mfprintf(fid,'\n\tThe kinetic rate of CO absorption at 180(°C) : %f (mol/L s)',r_test); mfprintf(fid,'\n\tThe predicted value of k_L_a : %0.2f (s-1)',k_L_a); mfprintf(fid,'\n\n\n OUTPUT Ex7.5.b'); mfprintf(fid,'\n=========================================================='); mfprintf(fid,'\n\tThe Dimensions of the reactor are '); mfprintf(fid,'\n\tDiameter:%0.0f m',D_t); mfprintf(fid,'\n\tHeight:%0.2f m',h); mfprintf(fid,'\n\n\n OUTPUT Ex7.5.c'); mfprintf(fid,'\n=========================================================='); mfprintf(fid,'\n\tThe new dimensions of the reactor'); mfprintf(fid,'\n\tDiameter:%0.1f m',D_t_c); mfprintf(fid,'\n\tHeight:%0.1f m',h_new); mclose(fid); //=================================================END OF PROGRAM===========================================================