//Harriot P.,2003,Chemical Reactor Design (I-Edition) Marcel Dekker,Inc.,USA,pp 436. //Chapter-5 Ex5.3 Pg No. 209 //Title:Overall heat transfer coefficients and radial average bed temperature for packed bed reactor //============================================================================================================= clear clc // COMMON INPUT k_s= 8*10^(-4);//(cal/sec cm°C) M_air_avg=29.24;// Average Molecular weight of air Cp_air_mol=7.91;// cal/mol°C; Cp_air_g=Cp_air_mol/M_air_avg;//cal/g°C dp=0.4;//Size of the catalyst pellet (cm) D=3.8;//Diameter of tube (cm) R_pellet=D/2;//Radius f_EO=0.7;//Fraction of ethylene forming ethylene oxide f_CO2_H2O=1-f_EO;//Fraction of ethylene forming CO2 and H2O rho_p=2.5;//Density of catalyst particle (g/cm3) V_ref=22400;//Reference volume(cm3) T_ref=273;// Reference Temperature (K) P_ref=1;//Reference Pressure (atm) P=5;//System Pressure (atm) T_C=230;//System Temperature (°C) T=T_C+273;//System Temperature (K) u_ft=[1.5 3];//Velocity (ft/s) myu=0.026*(10^(-2));//Viscosity of air (Poise) M_wt=[28 32 44 28];//Molecular weight M_fraction=[0.04 0.07 0.06 0.83]; Cp=[15.3 7.4 10.7 7.4];//(cal/mol°C) k_g=9.27*10^(-5);//(cal/sec cm°C) del_H_rxn=[-29.9 -317];//(kcal/mol) E=18*1000;//Activation Energy (cal) R=1.987;//Gas Constant (cal/K.mol) //CALCULATION (Ex5.3.a) rho=M_air_avg*P*T_ref/(V_ref*P_ref*T); u=30.533.*u_ft;//Velocity in (cm/s) Re_p=(rho*dp/myu).*u; Pr=Cp_air_g*myu/k_g; ks_by_kg=k_s/k_g; k0e_by_kg=3.5;//From figure 5.16 Pg. No. 203 kr_by_kg=2.5;//From equation 5.68 and 5.69 Pg. No. 204 for i=1:2 ktd_by_k_air(i)=(0.1*Pr)*Re_p(i); ke_by_kg(i)=(k0e_by_kg+kr_by_kg)+ktd_by_k_air(i); k_e(i)=ke_by_kg(i)*k_g; h_bed(i)=4*k_e(i)/R_pellet; Nu_w(i)=(1.94*Pr^(0.33))*Re_p(i)^(0.5);//Refer equation 5.83 Pg. No. 208 h_w(i)=(k_g/dp)*Nu_w(i);//(cal/sec cm2 K) h_j=100*10^(-3);//Assumed U(i)=1/((1/h_j)+(1/h_w(i))+(1/h_bed(i))); end //CALCULATION (Ex5.3.b) minus_delH=f_EO*(-del_H_rxn(1))+f_CO2_H2O*(-del_H_rxn(2)); T_max=T+20; del_Tc= R*(T_max)^2/E; T_new=250 +273; X_E=0.1; k250_by_k230=exp((E/R)*((1/T)-(1/T_new))); P_E=P*(1-X_E)*M_fraction(1); P_O2=P*(1-f_EO*X_E)*M_fraction(2); P_CO2=P*(1+f_CO2_H2O*X_E)*M_fraction(3); r=k250_by_k230*((0.076*P_E*P_O2)/(1+2*P_E+15*P_CO2)); Q_dash=r*minus_delH*10^3/3600; epsilon=0.4; rho_bed=rho_p*(1-0.4); A_percm3=4/D; Q=(Q_dash*rho_bed) for i=1:2 delta_T(i)=(Q/A_percm3)*(1/U(i)); end //OUTPUT ((Ex5.3.a)) mprintf('\n OUTPUT Ex5.3.a'); mprintf('\n==========================================================') mprintf('\nThe Overall Heat transfer coefficient for given Velocities' ) mprintf('\n==========================================================') mprintf('\n u(velocity) U') mprintf('\n (ft/s) (cal/cm2 sec K)') mprintf('\n==========================================================') for i=1:2 mprintf('\n %0.1f %3E',u_ft(i),U(i)) end //OUTPUT ((Ex5.3.b) mprintf('\n\n\n OUTPUT Ex5.3.b'); mprintf('\n==========================================================') mprintf('\nThe Peak Radial average bed temperature for given Velocities' ) mprintf('\n==========================================================') mprintf('\n u(velocity) delta_T') mprintf('\n (ft/s) (°C)') mprintf('\n==========================================================') for i=1:2 mprintf('\n %0.1f \t \t %0.0f',u_ft(i),delta_T(i)) end //FILE OUTPUT fid= mopen('.\Chapter5-Ex3-Output.txt','w'); mfprintf(fid,'\n OUTPUT Ex5.3.a'); mfprintf(fid,'\n==========================================================') mfprintf(fid,'\nThe Overall Heat transfer coefficient for given Velocities' ) mfprintf(fid,'\n==========================================================') mfprintf(fid,'\n u(velocity) U') mfprintf(fid,'\n (ft/s) (cal/cm2 sec K)') mfprintf(fid,'\n==========================================================') for i=1:2 mfprintf(fid,'\n %0.1f %3E',u_ft(i),U(i)) end mfprintf(fid,'\n\n\n OUTPUT Ex5.3.b'); mfprintf(fid,'\n==========================================================') mfprintf(fid,'\nThe Peak Radial average bed temperature for given Velocities' ) mfprintf(fid,'\n==========================================================') mfprintf(fid,'\n u(velocity) delta_T') mfprintf(fid,'\n (ft/s) (°C)') mfprintf(fid,'\n==========================================================') for i=1:2 mfprintf(fid,'\n %0.1f \t \t %0.0f',u_ft(i),delta_T(i)) end mclose(fid); //===============================================END OF PROGRAM=======================================================