//Harriot P.,2003,Chemical Reactor Design (I-Edition) Marcel Dekker,Inc.,USA,pp 436. //Chapter-3 Ex3.5 Pg No. 104 //Title: Rate Equation to fit Initial Rate data //========================================================================================================== clear clc clf() //INPUT (Ex3.5.1) //Initial Rate Data B_by_A= [5 7 10 20 37];//B/A Mol Ratio r_0=[75 65 50 33 18];//Rate (mol/hr g) //CALCULATION (Ex3.5.1) //Assuming Eley Rideal Mechanism for the benzene alkylation with propylene for i=1:5 C_B(i)= (B_by_A(i)/(1+B_by_A(i)));//In terms of Mol Fraaction C_A(i)= (1/(1+B_by_A(i))); CA_CB(i)=C_B(i)*C_A(i); C_by_r(i)=CA_CB(i)/r_0(i); end coefs=regress(C_A,C_by_r);//The equation ((C_B*C_A)/r_0)= 1/(k*K_A) + (C_A/k) scf(0) plot(C_A,C_by_r,'*'); xtitle('Test of Eley-Rideal model for benzene alkylation'); xlabel(' CA ,Mol Fraction'); ylabel('CA CB/r_0'); intercept=coefs(1); slope=coefs(2); K_A=slope/intercept; k=1/(slope); K_A_k=k*K_A; //OUTPUT (Ex3.5.1) mprintf('\n OUTPUT Ex3.5.1'); mprintf('\n=================================================') mprintf('\nThe rate equation for Eley-Ridely Mechanism is:\n r= %0.0fC_A C_B/(1+%0.2fC_A)',K_A_k,K_A); //========================================================================================================= //Title:Conversion as a function of Space velocity //========================================================================================================== //INPUT (Ex3.5.2) x= [0.16 0.31 0.40 0.75]; Exp_Inverse_WHSV=(10^-3)*[4 8.2 17 39];//Weight Hourly Space Velocity Feed_ratio=10; //CALCULATION (Ex3.5.2) //The integrated rate equation in terms of conversion ln(1/(1-X))+0.236X= 60.4/WHSV (Page no. 106) function [y]=integrated_rate_eqn(x0) y=log(1 ./(1-x0))+ 0.236.*x0 - 60.4.*Exp_Inverse_WHSV endfunction n=length(x) x0=0.9*ones(1,n); // Provide guess value for conversion [x_predicted]=fsolve(x0,integrated_rate_eqn,1d-15); // Using fsolve to determine conversion from integrated rate expression for each operating WHSV scf(1) plot(Exp_Inverse_WHSV,x,'*',Exp_Inverse_WHSV,x_predicted,'--') xtitle('Integral analysis','Inverse of WHSV','Conversion') legend('Experimental','Predicted') //OUTPUT (Ex3.5.2) //Console Output mprintf('\n=================================================\n'); mprintf('\n OUTPUT Ex3.5.2'); mprintf('\n Predicted and Experimental Conversion Values') mprintf('\n=================================================') mprintf('\n10^3/WHSV\tX_experimental\tX_predicted') mprintf('\n=================================================') for i=1:n mprintf('\n %0.2f\t\t%0.2f\t\t%0.2f ',Exp_Inverse_WHSV(i)*10^3,x(i),x_predicted(i)) end //FILE OUTPUT fid= mopen('.\Chapter3-Ex5-Output.txt','w'); mfprintf(fid,'\n OUTPUT Ex3.5.1'); mprintf('\n=================================================') mfprintf(fid,'\nThe rate equation for Eley-Ridely Mechanism is:\n r= %0.0fC_A C_B/(1+%0.2fC_A)',K_A_k,K_A); mfprintf(fid,'\n=================================================\n') mfprintf(fid,'\n OUTPUT Ex3.5.2'); mfprintf(fid,'\n Predicted and Experimental Conversion Values') mfprintf(fid,'\n=================================================') mfprintf(fid,'\n10^3/WHSV\tX_experimental\tX_predicted') mfprintf(fid,'\n=================================================') for i=1:n mfprintf(fid,'\n %0.2f\t\t%0.2f\t\t%0.2f ',Exp_Inverse_WHSV(i)*10^3,x(i),x_predicted(i)) end mclose(fid) //===========================================END OF PROGRAM================================= //Disclaimer:Regression method is used to find the slope and intercept in Ex3.5.2 . // Hence the rate equation differ from the graphically obtained values of slope and intercept in the textbook.