//Harriot P., 2003, Chemical Reactor Design (I-Edition), Marcel Dekker, Inc., USA, pp 436. //Chapter-10 Ex10.2 Pg No. 414 //Title:Conversion as a function of No. of Gauzes //=========================================================================================================== clear clc // COMMON INPUT M_NH3=17;//Molecular weight NH3 M_air=29;//Molecular weight air f_air=0.9;//Fraction of air in feed f_NH3=(1-f_air);//Fraction of NH3 in feed myu_air=0.0435*(10^-2);//Viscosity of air (Poise) P_atm=(100+14.7)/14.7;//Pressure of the system P_ref=1;//Reference Pressure T_ref=273;//Reference temperature T_inlet=300+T_ref;//Inlet Temperature V_ref=22400; T_surf=700+T_ref;//Surface Temperature u0=1.8;//Velocity at 300 °C (m/sec) d=0.076*(10^-1);//Size of wire (cm) D_NH3_N2=0.23;//Diffusivity at 298 K 1 atm(cm2/s) N=32;//Gauzes (wires/cm) frac_N2 = 0.25*(10^(-2));//Fraction of NH3 fed into N2 (Byproduct reaction) n =[1 2 5 10 15 20];//No. of Gauzes //CALCULATION (Ex 10.2.a) M_ave =f_air*M_air+f_NH3*M_NH3; rho =(M_ave*T_ref*P_atm)/(V_ref*T_surf*P_ref); u0_surf = u0*(T_surf/T_inlet); Re = rho*u0_surf*100*d/myu_air; Gamma = [1-32*(d)]^2;//From equation 10.5 Re_Gamma = Re/Gamma; D_NH3 = 0.23*(T_surf/298)^(1.7)*(1/7.8);// at 7.8 atm 700 °C Sc =(myu_air*P_ref)/(rho*D_NH3); j_D = 0.644*(Re_Gamma)^(-0.57);//Refer equation 10.14 k_c = j_D*(u0_surf*100/Gamma)*(1/(Sc)^(2/3)); a_dash = 2*(%pi)*(d)*N k_c_a_dash_u0 =(k_c*a_dash)/(u0_surf*100); m = length(n) for i = 1:m X(i) = (1-exp(-k_c_a_dash_u0*n(i))); end //CALCULATION (Ex 10.2.b) for i = 1:m X(i) = (1-exp(-k_c_a_dash_u0*n(i))); Yield(i) = X(i)-frac_N2*n(i); end //OUTPUT(Ex 10.2.a) mprintf('\n OUTPUT Ex10.2.a'); mprintf('\n====================================='); mprintf('\n \tThe Ammonia Conversion'); mprintf('\n====================================='); mprintf('\n\t Gauzes Conversion'); mprintf('\n\t (n) (X)'); mprintf('\n====================================='); for i=1:m mprintf('\n\t %.0f \t \t %.3f',n(i),X(i)); end //OUTPUT(Ex 10.2.b) mprintf('\n\n\n OUTPUT Ex10.2.b'); mprintf('\n=========================================='); mprintf('\n \tThe Ammonia Yield'); mprintf('\n=========================================='); mprintf('\n\t Gauzes Yield'); mprintf('\n\t (n) (X-%fn)',frac_N2); mprintf('\n=========================================='); for i=1:m mprintf('\n\t %.0f \t \t %.3f',n(i),Yield(i)); end //FILE OUTPUT fid= mopen('.\Chapter10-Ex2-Output.txt','w'); mfprintf(fid,'\n OUTPUT Ex10.2.a'); mfprintf(fid,'\n====================================='); mfprintf(fid,'\n \tThe Ammonia Conversion'); mfprintf(fid,'\n====================================='); mfprintf(fid,'\n\t Gauzes Conversion'); mfprintf(fid,'\n\t (n) (X)'); mfprintf(fid,'\n====================================='); for i=1:m mfprintf(fid,'\n\t %.0f \t \t %.3f',n(i),X(i)); end mfprintf(fid,'\n\n\n OUTPUT Ex10.2.b'); mfprintf(fid,'\n=========================================='); mfprintf(fid,'\n \tThe Ammonia Yield'); mfprintf(fid,'\n=========================================='); mfprintf(fid,'\n\t Gauzes Yield'); mfprintf(fid,'\n\t (n) (X-%fn)',frac_N2); mfprintf(fid,'\n=========================================='); for i=1:m mfprintf(fid,'\n\t %.0f \t \t %.3f',n(i),Yield(i)); end mclose(fid); //====================================================END OF PROGRAM====================================================