// Scilab Code Ex5.4 Angle between l and s for 2D(3/2) state: Pg:146 (2008) // For 2D(3/2) state l = 2; // Orbital quantum number s = 1/2; // Spin quantum number j = l+s; // Total quantum number // Now by cosine rule of L-S coupling // cos(theta) = (j*(j+1)-l*(l+1)-s*(s+1))/(2*sqrt(s*(s+1))*sqrt(l*(l+1))), solving for theta theta = acosd((l*(l+1)+s*(s+1)-j*(j+1))/(2*sqrt(s*(s+1))*sqrt(l*(l+1)))); // Angle between l and s for 2D(3/2) state printf("\nThe angle between l and s for 2D(3/2) state = %5.1f degrees", theta); // Result // The angle between l and s for 2D(3/2) state = 118.1 degrees