From b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b Mon Sep 17 00:00:00 2001 From: priyanka Date: Wed, 24 Jun 2015 15:03:17 +0530 Subject: initial commit / add all books --- 914/CH5/EX5.12/ex5_12.sce | 20 ++++++++++++++++++++ 1 file changed, 20 insertions(+) create mode 100755 914/CH5/EX5.12/ex5_12.sce (limited to '914/CH5/EX5.12/ex5_12.sce') diff --git a/914/CH5/EX5.12/ex5_12.sce b/914/CH5/EX5.12/ex5_12.sce new file mode 100755 index 000000000..732e32ba4 --- /dev/null +++ b/914/CH5/EX5.12/ex5_12.sce @@ -0,0 +1,20 @@ +clc; +warning("off"); +printf("\n\n example5.12 - pg178"); +// given +T=0+273.15; //[K] - temperature in Kelvins +pa2=1.5; //[atm] - partial presuure of a at point2 +pa1=0.5; //[atm] - partial pressure of a at point 1 +z2=20; //[cm] - position of point 2 from reference point +z1=0; //[cm] - position of point1 from reference point +p=2; //[atm] - total pressure +d=1; //[cm] - diameter +D=0.275; //[cm^2/sec] - diffusion coefficient +A=(%pi*((d)^2))/4; +R=0.082057; //[atm*m^3*kmol^-1*K^-1] - gas constant +k=0.75; +// using the formula (Na/A)=-(D/(R*T*(z2-z1)))*ln((1-(pa2/p)*(1-k))/(1-(pa1/p)*(1-k))) +NabyA=-(D/(R*T*(z2-z1)))*(2*0.7854)*log((1-(pa2/p)*(1-k))/(1-(pa1/p)*(1-k)))/(10^6); +printf("\n\n (Na/A)=%ekmol/sec",NabyA); +printf("\n Note that this answer is larger than the rate for equimolar counter diffusion but smaller tahn the rate for diffusion through a stagnant film.Sometimes the rate for diffusin through a stagnant film can be considered as an upper bound, if k ties between zero and one"); + -- cgit