From b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b Mon Sep 17 00:00:00 2001 From: priyanka Date: Wed, 24 Jun 2015 15:03:17 +0530 Subject: initial commit / add all books --- 914/CH12/EX12.12/ex12_12.sce | 20 ++++++++++++++++++++ 1 file changed, 20 insertions(+) create mode 100755 914/CH12/EX12.12/ex12_12.sce (limited to '914/CH12/EX12.12') diff --git a/914/CH12/EX12.12/ex12_12.sce b/914/CH12/EX12.12/ex12_12.sce new file mode 100755 index 000000000..32ec2ccae --- /dev/null +++ b/914/CH12/EX12.12/ex12_12.sce @@ -0,0 +1,20 @@ +clc; +warning("off"); +printf("\n\n example12.12 - pg 594"); +// given +pp=1.13*10^4; //[kg/m^3] - density of lead particle +p=1.22; //[kg/m^3] - density of air +g=9.80; //[m/sec^2] - acceleration due to gravity +d=2*10^-3; //[m] - diameter of particle +mu=1.81*10^-5; //[kg/m*sec] - viscosity of air +// let us assume +Cd=0.44; +Ut=((4*d*g*(pp-p))/(3*p*Cd))^(1/2); +disp(Ut) +Nre=(Ut*d*p)/(mu); +// from fig 12,16 value of Cd is +Cd=0.4; +Ut=((4*d*g*(pp-p))/(3*p*Cd))^(1/2); +Nre=(Ut*d*p)/(mu); +// Within the readibility of the chart Cd is unchanged and therefore the above obtained Cd is the final answer +printf("\n\n The terminal velocity is \n Ut = %f m/sec",Ut); -- cgit