From b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b Mon Sep 17 00:00:00 2001 From: priyanka Date: Wed, 24 Jun 2015 15:03:17 +0530 Subject: initial commit / add all books --- 905/CH1/EX1.16/1_16.sce | 26 ++++++++++++++++++++++++++ 1 file changed, 26 insertions(+) create mode 100755 905/CH1/EX1.16/1_16.sce (limited to '905/CH1/EX1.16/1_16.sce') diff --git a/905/CH1/EX1.16/1_16.sce b/905/CH1/EX1.16/1_16.sce new file mode 100755 index 000000000..fcdb43084 --- /dev/null +++ b/905/CH1/EX1.16/1_16.sce @@ -0,0 +1,26 @@ +clear; +clc; + +// Illustration 1.16 +// Page: 44 + +printf('Illustration 1.16 - Page:44 \n\n'); +// Solution + +//*****Data*****// +// Nickel Carbonyl-A carbon monoxide-B +T = 323; // [K] +P = 1; // [atm] +R = 8.314; // [cubic m.Pa/mole.K] +y_A1 = 1.0; +y_A2 = 0.5; +delta = 0.625; // [mm] +D_AB = 20; // [square mm/s] +//*****// + +// The stoichiometry of the reaction determines the relation between the fluxes: from equation (1-59), N_B = - 4N_A and N_A + N_B = -3NA +// Molar flux fraction si_A = N_A/(N_A+N_B) = N_A/(-3*N_A) = -1/3 +si_A = -1/3; +// Using equation 1.78 +N_A = si_A*(D_AB*10^-6*P*10^5*log((si_A-y_A2)/(si_A-y_A1))/(R*T*delta*10^-3)); +printf("The molar flux of component A is %f mole/square m.s",N_A); -- cgit