From f35ea80659b6a49d1bb2ce1d7d002583f3f40947 Mon Sep 17 00:00:00 2001 From: prashantsinalkar Date: Tue, 10 Oct 2017 12:38:01 +0530 Subject: updated the code --- 839/CH6/EX6.2/Example_6_2.sce | 114 +++++++++++++++++++++--------------------- 1 file changed, 57 insertions(+), 57 deletions(-) (limited to '839/CH6/EX6.2/Example_6_2.sce') diff --git a/839/CH6/EX6.2/Example_6_2.sce b/839/CH6/EX6.2/Example_6_2.sce index 4abb1d09a..ed2213d65 100755 --- a/839/CH6/EX6.2/Example_6_2.sce +++ b/839/CH6/EX6.2/Example_6_2.sce @@ -1,57 +1,57 @@ -//clear// -clear; -clc; - -//Example 6.2 -//Given -Tr = 1000; //[R] -pr = 20; //[atm] -Ma_a = 0.05; -gama = 1.4; -gc = 32.174; //[ft-lb/lbf-s^2] -M = 29; -R = 1545; -//(a) -//Using Eq.(6.45) -A = 2*(1+((gama-1)/2)*Ma_a^2)/((gama+1)*Ma_a^2); -fLmax_rh = (1/Ma_a^2-1-(gama+1)*log(A)/2)/gama - -//(b) -//Using Eq.(6.28), the pressure at the end of the isentropic nozzle pa -A = (1+(gama-1)*(Ma_a^2)/2); -pa = pr/(A^(gama/(gama-1))) // [atm] -//From Example 6.1, the density of air at 20atm and 1000R is 0.795 lb/ft^3 -//Using Eq.(6.17), the acoustic velocity -Aa = sqrt(gc*gama*Tr*R/M) //[m/s] -//The velocity at the entrance of the pipe -ua = Ma_a*Aa //[m/s] -//When L_b = L_max, the gas leaves the pipe at the asterisk conditions, where -Ma_b = 1; -// Using Eq.(6.43) -A = (gama-1)/2; -Tstar = Tr *(1+A*Ma_a^2)/(1+A*Ma_b^2) // [K] -// Using Eq.(6.44) -rho_star = 0.795*Ma_a/sqrt(2*(1+(gama-1)*Ma_a^2/2)/(2.4)) //[lb/ft^3] -//Using Eq.(6.39) -pstar = p0*Ma_a/sqrt(1.2) // [atm] -//Mass velocity through the entire pipe -G = 0.795*ua //[lb/ft^2-s] -ustar = G/rho_star //[ft/s] - -//(c) -//Using Eq.(6.45) with f_Lmax_rh = 400 - -err = 1; -eps = 10^-3; -Ma_ac = rand(1,1); -i =1; -while((err>eps)) - A = 2*(1+((gama-1)/2)*Ma_ac^2)/((gama+1)*Ma_ac^2); - B = gama*400+1+(gama+1)*log(A)/2; - Ma_anew = sqrt(1/B); - err = Ma_ac-Ma_anew; - Ma_ac = Ma_anew; -end -Ma_ac; -uac = Ma_ac*ua/Ma_a //[ft/s] -Gc = uac*0.795 //[lb/ft^2-s] +//clear// +clear; +clc; + +//Example 6.2 +//Given +Tr = 1000; //[R] +pr = 20; //[atm] +Ma_a = 0.05; +gama = 1.4; +gc = 32.174; //[ft-lb/lbf-s^2] +M = 29; +R = 1545; +//(a) +//Using Eq.(6.45) +A = 2*(1+((gama-1)/2)*Ma_a^2)/((gama+1)*Ma_a^2); +fLmax_rh = (1/Ma_a^2-1-(gama+1)*log(A)/2)/gama + +//(b) +//Using Eq.(6.28), the pressure at the end of the isentropic nozzle pa +A = (1+(gama-1)*(Ma_a^2)/2); +pa = pr/(A^(gama/(gama-1))) // [atm] +//From Example 6.1, the density of air at 20atm and 1000R is 0.795 lb/ft^3 +//Using Eq.(6.17), the acoustic velocity +Aa = sqrt(gc*gama*Tr*R/M) //[m/s] +//The velocity at the entrance of the pipe +ua = Ma_a*Aa //[m/s] +//When L_b = L_max, the gas leaves the pipe at the asterisk conditions, where +Ma_b = 1; +// Using Eq.(6.43) +A = (gama-1)/2; +Tstar = Tr *(1+A*Ma_a^2)/(1+A*Ma_b^2) // [K] +// Using Eq.(6.44) +rho_star = 0.795*Ma_a/sqrt(2*(1+(gama-1)*Ma_a^2/2)/(2.4)) //[lb/ft^3] +//Using Eq.(6.39) +pstar = pa*Ma_a/sqrt(1.2) // [atm] +//Mass velocity through the entire pipe +G = 0.795*ua //[lb/ft^2-s] +ustar = G/rho_star //[ft/s] + +//(c) +//Using Eq.(6.45) with f_Lmax_rh = 400 + +err = 1; +eps = 10^-3; +Ma_ac = rand(1,1); +i =1; +while((err > eps)) + A = 2*(1+((gama-1)/2)*Ma_ac^2)/((gama+1)*Ma_ac^2); + B = gama*400+1+(gama+1)*log(A)/2; + Ma_anew = sqrt(1/B); + err = Ma_ac-Ma_anew; + Ma_ac = Ma_anew; +end +Ma_ac; +uac = Ma_ac*ua/Ma_a //[ft/s] +Gc = uac*0.795 //[lb/ft^2-s] \ No newline at end of file -- cgit