From b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b Mon Sep 17 00:00:00 2001 From: priyanka Date: Wed, 24 Jun 2015 15:03:17 +0530 Subject: initial commit / add all books --- 839/CH17/EX17.1/Example_17_1.sce | 40 ++++++++++++++++++++++++++++++++++++ 839/CH17/EX17.2/Example_17_2.sce | 44 ++++++++++++++++++++++++++++++++++++++++ 2 files changed, 84 insertions(+) create mode 100755 839/CH17/EX17.1/Example_17_1.sce create mode 100755 839/CH17/EX17.2/Example_17_2.sce (limited to '839/CH17') diff --git a/839/CH17/EX17.1/Example_17_1.sce b/839/CH17/EX17.1/Example_17_1.sce new file mode 100755 index 000000000..95f209799 --- /dev/null +++ b/839/CH17/EX17.1/Example_17_1.sce @@ -0,0 +1,40 @@ +//clear// +clear; +clc; + +//Example 17.1 +//Given +yb = 0.30; + +//Let +Vb = 100; //[mol] +Ace_in = yb*Vb; //[mol] +Air_in = Vb-Ace_in; //[mol] +//97 percent acetone aborbed, Acetone leaving is +Ace_out = 0.03*Ace_in; //[mol] +ya = Ace_out/(Air_in+Ace_out); +//Acetone absorbed +Ace_abs = Ace_in-Ace_out; //[mol] +//10 percent acetone in the leaving solution and no acetone in the entering oil +Lb = Ace_abs/0.1; //[mol] +La = Lb-Ace_abs; //[mol] +//To find out as intermediate point on the operating line, making an acetone balance +//around the top part of the tower, assuming a particular value of yV the moles of +//acetone left in the gas. +for i=1:30 + y(i) = i/(i+Air_in); +//The moles of acetone lost by the gas in the secion, must equal to the moles gained by //the liquid +Ace_lost = i-Ace_out; //[mol] +//Hence +x(i) = Ace_lost/(La+Ace_lost); +end +xe = linspace(0.001,0.15,100); +ye = 1.9*xe; + +plot(x,y) +plot(xe,ye,'r') +xlabel('x') +ylabel('y') +legend('Operating line','Equilibrium line') +title('Diagram Example 17.1') +//The number of ideal stages determined from Fig is 4 diff --git a/839/CH17/EX17.2/Example_17_2.sce b/839/CH17/EX17.2/Example_17_2.sce new file mode 100755 index 000000000..71a69f644 --- /dev/null +++ b/839/CH17/EX17.2/Example_17_2.sce @@ -0,0 +1,44 @@ +//clear// +clear; +clc; + +//Example 17.2 +//Given +Nreal = 7; +VbyL = 1.5; +m = 0.8; +yb = 0; +xb_star = 0; +//xb=0.1*xa; + +//(a) +//Stripping Factor +S = m*VbyL; +//From an ammonia balance, +//ya =0.9*xa/VbyL; +//Also +//xa_star = ya/m +//Using Eq.(17.28) +//N = ln((xa-0.75*xa)/(0.1*xa-0))/ln(S) +N = log(0.25/0.1)/log(S); +disp(N,'Number of ideal trays required are') +stage_eff = N/Nreal*100; +disp('%',stage_eff,'Stage Efficiency is') + +//(b) +VbyL = 2; +S = m*VbyL; +//Then, +//Let A = (xa-xa_star)/xb +A = exp(5.02); +//Let 'f' be the fraction of NH3 removed. Then xb = (1-f)*xa. +//By a material balance +//y = L/V*(xa-xb) = 1/2*(xa-(1-f)*xa)= 1/2*f*xa +//xa_star = ya/m = 0.5*f*xa/0.8 = 0.625*f*xa +//Thus, +//xa-xa_star = (1-0.625*f)*xa +//Also, +//xa-xa_star = 10.59*xb = 10.59*(1-f)*xa +//from these +f = 0.962 +disp('%',f,'percentage removal obtained in this case is') -- cgit