From b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b Mon Sep 17 00:00:00 2001 From: priyanka Date: Wed, 24 Jun 2015 15:03:17 +0530 Subject: initial commit / add all books --- 68/CH1/EX1.1/ex1.sce | 25 +++++++++++++++++++++++++ 68/CH1/EX1.2/ex2.sce | 13 +++++++++++++ 68/CH1/EX1.3/ex3.sce | 17 +++++++++++++++++ 68/CH1/EX1.4/ex4.sce | 20 ++++++++++++++++++++ 68/CH1/EX1.5/ex5.sce | 17 +++++++++++++++++ 68/CH1/EX1.6/ex6.sce | 12 ++++++++++++ 6 files changed, 104 insertions(+) create mode 100755 68/CH1/EX1.1/ex1.sce create mode 100755 68/CH1/EX1.2/ex2.sce create mode 100755 68/CH1/EX1.3/ex3.sce create mode 100755 68/CH1/EX1.4/ex4.sce create mode 100755 68/CH1/EX1.5/ex5.sce create mode 100755 68/CH1/EX1.6/ex6.sce (limited to '68/CH1') diff --git a/68/CH1/EX1.1/ex1.sce b/68/CH1/EX1.1/ex1.sce new file mode 100755 index 000000000..8d243ee34 --- /dev/null +++ b/68/CH1/EX1.1/ex1.sce @@ -0,0 +1,25 @@ +// Example1.1: Amplifier gain, power and eficiency +// Amplifier operates at +10-V/-10-V power supply. +A_v=9/1; // sinusoidal voltage input of 1V peak and sinusoidal output voltage of 9V peak +I_o=9/1000; // 1 kilo ohms load +disp(A_v,"Voltage gain (V/V) =") +disp(20*log10(A_v),"Voltage gain (dB) =") +I_i=0.0001 // sinusoidal current input of 0.1mA peak +A_i=I_o/I_i; +disp(A_i,"Current gain (A/A) =") +disp(20*log10(A_i),"Current gain (dB) =") +V_orms = 9/sqrt(2); +I_orms = 9/sqrt(2); +P_L=V_orms*I_orms; // output power in mW +V_irms=1/sqrt(2); +I_irms=0.1/sqrt(2); +P_I=V_irms*I_irms; // input power in mW +A_p=P_L/P_I; +disp(A_p,"Power gain (W/W) =") +disp(10*log10(A_p),"Power gain (dB) =") +P_dc=10*9.5+10*9.5; // amplifier draws a current of 9.5mA from each of its two power supplies +disp(P_dc,"Power drawn from the dc supplies (mW) =") +P_dissipated=P_dc+P_I-P_L; +disp(P_dissipated,"Power dissipated in the amplifier (mW)") +n=P_L/P_dc*100; +disp(n,"Amplifier efficiency in percentage") \ No newline at end of file diff --git a/68/CH1/EX1.2/ex2.sce b/68/CH1/EX1.2/ex2.sce new file mode 100755 index 000000000..87f07b3c6 --- /dev/null +++ b/68/CH1/EX1.2/ex2.sce @@ -0,0 +1,13 @@ +// Example 1.2: Gain of transistor amplifier +// Amplifier has transfer characteristics v_O=10-(10^-11)*(exp^40*v_1) applies for v_1 is greater than or equal 0V and v_o is greater than or equal to 0.3V +L_l = 0.3; // limit L_- +disp(L_l,"The limit L_- (V) =") +v_I=1/40*log((10-0.3)/10^-11); // from the transfer characteristics and v_o=0.3V +disp(v_I,"v_I in volts =") +L_u=10-10^-11; // obtained by v_I=0 in transfer characteristics +disp(L_u,"the limit L_+ (V) =") +V_I=1/40*log((10-5)/10^-11); // V_O=5V +disp(V_I,"The value of the dc bias voltage that results in V_O=5V (V)=") +A_v=-10^-11*exp(40*V_I)*40; // A_v=dv_O/dv_I +disp(A_v,"Gain at the operating point (V/V) =") +disp("NOTE the gain is negative that implies the amplifier is an inverting amplifier") diff --git a/68/CH1/EX1.3/ex3.sce b/68/CH1/EX1.3/ex3.sce new file mode 100755 index 000000000..d4cd1d46a --- /dev/null +++ b/68/CH1/EX1.3/ex3.sce @@ -0,0 +1,17 @@ +// Example 1.3 : Overall voltage gain of cthree-stage amplifier +gainloss_in=10^6/(1*10^6+100*10^3); // fraction of input signal is obtained using voltage divider rule , gainloss_in= v_i1/v_s +A_v1=10*100000/(100000+1000); // A_v1 = v_i2/v_i1 is the voltage gain at first stage +A_v2=100*10000/(10000+1000); // A_v2 = v_i3/v_i2 is the voltage gain at second stage +A_v3=100/(100+10); // A_v3 = v_L/v_i3 is the voltage gain at the output stage +A_v=A_v1*A_v2*A_v3; // A_v is the total voltage gain +disp(A_v,"The overall voltage gain (V/V) =") +disp(20*log10(A_v),"The overall voltage gain (dB) =") +gain_src_ld=A_v*gainloss_in; +disp(gain_src_ld,"The voltage gain from source to gain (V/V) =") +disp(20*log10(gain_src_ld),"The voltage gain from source to load (dB) =") +A_i=10^4*A_v; // A_i=i_o/i_i=(v_L/100)/(v_i1/10^6) +disp(A_i,"The current gain (A/A)=") +disp(20*log10(A_i),"The current gain (dB) =") +A_p=818*818*10^4; // A_p=P_L/P_I=v_L*i_o/v_i1*i_i +disp(A_p,"The power gain (W/W) =") +disp(10*log10(A_p),"The power gain (dB) =") \ No newline at end of file diff --git a/68/CH1/EX1.4/ex4.sce b/68/CH1/EX1.4/ex4.sce new file mode 100755 index 000000000..af74e925d --- /dev/null +++ b/68/CH1/EX1.4/ex4.sce @@ -0,0 +1,20 @@ +// Example1.4 : Bipolar junction transistor + +// 1,4a +// using voltage divider rule the fraction of input signal v_be=v_s*r_pi/(r_pi+R_s) +// output voltage v_o=-g_mv_be(R_L||r_o) +r_pi=2.5*10^3; // (ohm) +R_s=5*10^3; // (ohm) +R_L=5*10^3 // (ohm) +g_m=40*10^-3; // (mho) +r_o=100*10^3; // (ohm) +gain=-(r_pi*g_m*(R_L*r_o/(R_L+r_o)))/(r_pi+R_s); // gain=v_o/v_s +disp(gain,"The voltage gain (V/V) =") +gain_negl_r_o=-r_pi*g_m*R_L/(r_pi+R_s); +disp(gain_negl_r_o,"Gain neglecting the effect of r_o (V/V) =") + +// 1.4b +// Bi_b=g_m*v_be +// B is short circuit gain +B=g_m*r_pi; +disp(B,"The short circuit gain (A/A) =") \ No newline at end of file diff --git a/68/CH1/EX1.5/ex5.sce b/68/CH1/EX1.5/ex5.sce new file mode 100755 index 000000000..81db740be --- /dev/null +++ b/68/CH1/EX1.5/ex5.sce @@ -0,0 +1,17 @@ +// Example 1.5 : DC gain, 3dB frequency and frequency at which gain=0 of voltage amplifier + +// 1.5b +R_s =20*10^3; // (ohm) +R_i =100*10^3; // (ohm) +C_i =60*10^-12; // (ohm) +u = 144; // (V/V) +R_o = 200; // (ohm) +R_L = 1000; // (ohm) +K=u/((1+R_s/R_i)*(1+R_o/R_L)); +disp(K,"The dc gain (V/V)= ") +disp(20*log10(K)," The dc gain (dB) =") +w_o=1/(C_i*R_s*R_i/(R_s+R_i)); +disp(w_o,"The 3-dB frequency (rad/s) =") +f_o= w_o/2/%pi; +disp(f_o,"Frequency (Hz) =") +disp(100*w_o,"unity gain frequency (rad/s)=",100*f_o,"Unity gain frequency (Hz)") \ No newline at end of file diff --git a/68/CH1/EX1.6/ex6.sce b/68/CH1/EX1.6/ex6.sce new file mode 100755 index 000000000..5531487b0 --- /dev/null +++ b/68/CH1/EX1.6/ex6.sce @@ -0,0 +1,12 @@ +// Example 1.6: Time for the output to reach (V_OH+V_OL)/2 +V_DD=5; // (V) +R=1000; // (ohm) +R_on=100; // (ohm) +V_offset=0.1; // (V) +C=10*10^-12; // (F) +V_OH=5; // (V) +V_OL=V_offset+(V_DD-V_offset)*R_on/(R+R_on); +T=R*C; +v_o_t_PLH=(V_OH+V_OL)/2; //to find t_PLH +t_PLH=0.69*T;// t_PLH is low to high propogtion delay +disp(t_PLH,"time required for he output to reach (V_OH+V_OL)/2 (seconds) =") \ No newline at end of file -- cgit