From b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b Mon Sep 17 00:00:00 2001 From: priyanka Date: Wed, 24 Jun 2015 15:03:17 +0530 Subject: initial commit / add all books --- 587/CH1/EX1.1/example1_1.sce | 32 +++++++++++++++++ 587/CH1/EX1.10/example1_10.sce | 17 +++++++++ 587/CH1/EX1.11/example1_11.sce | 36 ++++++++++++++++++++ 587/CH1/EX1.13/example1_13.sce | 13 +++++++ 587/CH1/EX1.14/example1_14.sce | 10 ++++++ 587/CH1/EX1.2/example1_2.sce | 19 +++++++++++ 587/CH1/EX1.3/example1_3.sce | 24 +++++++++++++ 587/CH1/EX1.4/example1_4.sce | 30 ++++++++++++++++ 587/CH1/EX1.5/example1_5.sce | 20 +++++++++++ 587/CH1/EX1.6/example1_6.sce | 16 +++++++++ 587/CH1/EX1.7/example1_7.sce | 10 ++++++ 587/CH1/EX1.8/example1_8.sce | 20 +++++++++++ 587/CH1/EX1.9/example1_9.sce | 15 ++++++++ 587/CH10/EX10.1/example10_1.sce | 25 ++++++++++++++ 587/CH10/EX10.2/example10_2.sce | 24 +++++++++++++ 587/CH10/EX10.3/example10_3.sce | 28 +++++++++++++++ 587/CH10/EX10.4/example10_4.sce | 31 +++++++++++++++++ 587/CH10/EX10.5/example10_5.sce | 32 +++++++++++++++++ 587/CH10/EX10.6/example10_6.sce | 29 ++++++++++++++++ 587/CH10/EX10.7/example10_7.sce | 31 +++++++++++++++++ 587/CH10/EX10.8/example10_8.sce | 18 ++++++++++ 587/CH11/EX11.1/example11_1.sce | 38 +++++++++++++++++++++ 587/CH11/EX11.10/example11_10.sce | 22 ++++++++++++ 587/CH11/EX11.2/Example11_2.sce | 23 +++++++++++++ 587/CH11/EX11.3/example11_3.sce | 22 ++++++++++++ 587/CH11/EX11.4/example11_4.sce | 24 +++++++++++++ 587/CH11/EX11.5/example11_5.sce | 28 +++++++++++++++ 587/CH11/EX11.6/example11_6.sce | 22 ++++++++++++ 587/CH11/EX11.7/example11_6.sce | 22 ++++++++++++ 587/CH11/EX11.8/example11_8.sce | 32 +++++++++++++++++ 587/CH11/EX11.9/example11_9.sce | 34 ++++++++++++++++++ 587/CH12/EX12.1/example12_1.sce | 22 ++++++++++++ 587/CH12/EX12.2/example12_2.sce | 13 +++++++ 587/CH12/EX12.3/example12_3.sce | 17 +++++++++ 587/CH12/EX12.4/example12_4.sce | 21 ++++++++++++ 587/CH12/EX12.5/example12_5.sce | 27 +++++++++++++++ 587/CH12/EX12.6/example12_6.sce | 28 +++++++++++++++ 587/CH13/EX13.1/example13_1.sce | 18 ++++++++++ 587/CH13/EX13.10/example13_10.sce | 42 +++++++++++++++++++++++ 587/CH13/EX13.11/example13_11.sce | 11 ++++++ 587/CH13/EX13.12/example13_12.sce | 11 ++++++ 587/CH13/EX13.13/example13_13.sce | 19 +++++++++++ 587/CH13/EX13.14/example13_14.sce | 24 +++++++++++++ 587/CH13/EX13.15/example13_15.sce | 17 +++++++++ 587/CH13/EX13.2/example13_2.sce | 14 ++++++++ 587/CH13/EX13.3/example13_3.sce | 11 ++++++ 587/CH13/EX13.5/example13_5.sce | 15 ++++++++ 587/CH13/EX13.6/example13_6.sce | 18 ++++++++++ 587/CH13/EX13.7/example13_7.sce | 10 ++++++ 587/CH13/EX13.8/example13_8.sce | 30 ++++++++++++++++ 587/CH13/EX13.9/example13_9.sce | 15 ++++++++ 587/CH14/EX14.1/example14_1.sce | 14 ++++++++ 587/CH14/EX14.10/example14_10.sce | 24 +++++++++++++ 587/CH14/EX14.11/example14_11.sce | 30 ++++++++++++++++ 587/CH14/EX14.12/example14_12.sce | 26 ++++++++++++++ 587/CH14/EX14.13/example14_13.sce | 72 +++++++++++++++++++++++++++++++++++++++ 587/CH14/EX14.2/example14_2.sce | 13 +++++++ 587/CH14/EX14.3/example14_3.sce | 13 +++++++ 587/CH14/EX14.4/example14_4.sce | 13 +++++++ 587/CH14/EX14.5/example14_5.sce | 16 +++++++++ 587/CH14/EX14.6/example14_6.sce | 25 ++++++++++++++ 587/CH14/EX14.7/example14_7.sce | 15 ++++++++ 587/CH14/EX14.8/example14_8.sce | 29 ++++++++++++++++ 587/CH14/EX14.9/example14_9.sce | 25 ++++++++++++++ 587/CH2/EX2.10/example2_10.sce | 20 +++++++++++ 587/CH2/EX2.11/example2_11.sce | 22 ++++++++++++ 587/CH2/EX2.13/example2_13.sce | 20 +++++++++++ 587/CH2/EX2.14/example2_14.sce | 23 +++++++++++++ 587/CH2/EX2.15/example2_15.sce | 17 +++++++++ 587/CH2/EX2.16/example2_16.sce | 16 +++++++++ 587/CH2/EX2.17/example2_17.sce | 16 +++++++++ 587/CH2/EX2.18/example2_18.sce | 14 ++++++++ 587/CH2/EX2.19/example2_19.sce | 15 ++++++++ 587/CH2/EX2.2/example2_2.sce | 14 ++++++++ 587/CH2/EX2.21/example2_21.sce | 17 +++++++++ 587/CH2/EX2.4/example2_4.sce | 16 +++++++++ 587/CH2/EX2.5/example2_5.sce | 11 ++++++ 587/CH2/EX2.6/example2_6.sce | 14 ++++++++ 587/CH2/EX2.7/example2_7.sce | 20 +++++++++++ 587/CH2/EX2.8/example2_8.sce | 15 ++++++++ 587/CH2/EX2.9/example2_9.sce | 21 ++++++++++++ 587/CH3/EX3.1/example3_1.sce | 21 ++++++++++++ 587/CH3/EX3.10/example3_10.sce | 12 +++++++ 587/CH3/EX3.11/example3_11.sce | 11 ++++++ 587/CH3/EX3.12/example3_12.sce | 48 ++++++++++++++++++++++++++ 587/CH3/EX3.13/example3_13.sce | 18 ++++++++++ 587/CH3/EX3.14/example3_14.sce | 17 +++++++++ 587/CH3/EX3.15/example3_15.sce | 32 +++++++++++++++++ 587/CH3/EX3.16/example3_16.sce | 24 +++++++++++++ 587/CH3/EX3.17/example3_17.sce | 16 +++++++++ 587/CH3/EX3.2/example3_2.sce | 28 +++++++++++++++ 587/CH3/EX3.3/example3_3.sce | 30 ++++++++++++++++ 587/CH3/EX3.4/example3_4.sce | 17 +++++++++ 587/CH3/EX3.5/example3_5.sce | 24 +++++++++++++ 587/CH3/EX3.6/example3_6.sce | 42 +++++++++++++++++++++++ 587/CH3/EX3.7/example3_7.sce | 50 +++++++++++++++++++++++++++ 587/CH3/EX3.8/example3_8.sce | 32 +++++++++++++++++ 587/CH3/EX3.9/example3_9.sce | 31 +++++++++++++++++ 587/CH4/EX4.1/example4_1.sce | 25 ++++++++++++++ 587/CH4/EX4.10/example4_10.sce | 28 +++++++++++++++ 587/CH4/EX4.11/example4_11.sce | 23 +++++++++++++ 587/CH4/EX4.2/example4_2.sce | 26 ++++++++++++++ 587/CH4/EX4.3/example4_3.sce | 27 +++++++++++++++ 587/CH4/EX4.4/example4_4.sce | 25 ++++++++++++++ 587/CH4/EX4.5/example4_5.sce | 31 +++++++++++++++++ 587/CH4/EX4.6/example4_6.sce | 23 +++++++++++++ 587/CH4/EX4.7/example4_7.sce | 16 +++++++++ 587/CH4/EX4.8/example4_8.sce | 34 ++++++++++++++++++ 587/CH4/EX4.9/example4_9.sce | 33 ++++++++++++++++++ 587/CH5/EX5.1/example5_1.sce | 26 ++++++++++++++ 587/CH5/EX5.2/example5_2.sce | 36 ++++++++++++++++++++ 587/CH5/EX5.3/example5_3.sce | 25 ++++++++++++++ 587/CH5/EX5.4/example5_4.sce | 32 +++++++++++++++++ 587/CH5/EX5.5/example5_5.sce | 26 ++++++++++++++ 587/CH5/EX5.6/example5_6.sce | 49 ++++++++++++++++++++++++++ 587/CH6/EX6.1/example6_1.sce | 25 ++++++++++++++ 587/CH6/EX6.2/example6_2.sce | 19 +++++++++++ 587/CH7/EX7.1/example7_1.sce | 33 ++++++++++++++++++ 587/CH7/EX7.2/example7_2.sce | 44 ++++++++++++++++++++++++ 587/CH7/EX7.3/example7_3.sce | 42 +++++++++++++++++++++++ 587/CH7/EX7.4/example7_4.sce | 17 +++++++++ 587/CH7/EX7.5/example7_5.sce | 20 +++++++++++ 587/CH7/EX7.6/example7_6.sce | 31 +++++++++++++++++ 587/CH7/EX7.7/example7_7.sce | 44 ++++++++++++++++++++++++ 587/CH7/EX7.8/example7_8.sce | 35 +++++++++++++++++++ 587/CH7/EX7.9/example7_9.sce | 32 +++++++++++++++++ 587/CH8/EX8.1/example8_1.sce | 25 ++++++++++++++ 587/CH8/EX8.2/example8_2.sce | 24 +++++++++++++ 587/CH8/EX8.3/example8_3.sce | 38 +++++++++++++++++++++ 587/CH8/EX8.4/example8_4.sce | 26 ++++++++++++++ 587/CH8/EX8.5/example8_5.sce | 32 +++++++++++++++++ 587/CH8/EX8.6/example8_6.sce | 30 ++++++++++++++++ 587/CH8/EX8.7/example8_7.sce | 23 +++++++++++++ 587/CH8/EX8.8/example8_8.sce | 27 +++++++++++++++ 587/CH9/EX9.1/example9_1.sce | 31 +++++++++++++++++ 587/CH9/EX9.2/example9_2.sce | 42 +++++++++++++++++++++++ 587/CH9/EX9.3/example9_3.sce | 29 ++++++++++++++++ 587/CH9/EX9.4/example9_4.sce | 25 ++++++++++++++ 587/CH9/EX9.5/example9_5.sce | 24 +++++++++++++ 587/CH9/EX9.6/example9_6.sce | 41 ++++++++++++++++++++++ 587/CH9/EX9.7/example9_7.sce | 15 ++++++++ 587/CH9/EX9.8/example9_8.sce | 21 ++++++++++++ 587/CH9/EX9.9/example9_9.sce | 14 ++++++++ 143 files changed, 3483 insertions(+) create mode 100755 587/CH1/EX1.1/example1_1.sce create mode 100755 587/CH1/EX1.10/example1_10.sce create mode 100755 587/CH1/EX1.11/example1_11.sce create mode 100755 587/CH1/EX1.13/example1_13.sce create mode 100755 587/CH1/EX1.14/example1_14.sce create mode 100755 587/CH1/EX1.2/example1_2.sce create mode 100755 587/CH1/EX1.3/example1_3.sce create mode 100755 587/CH1/EX1.4/example1_4.sce create mode 100755 587/CH1/EX1.5/example1_5.sce create mode 100755 587/CH1/EX1.6/example1_6.sce create mode 100755 587/CH1/EX1.7/example1_7.sce create mode 100755 587/CH1/EX1.8/example1_8.sce create mode 100755 587/CH1/EX1.9/example1_9.sce create mode 100755 587/CH10/EX10.1/example10_1.sce create mode 100755 587/CH10/EX10.2/example10_2.sce create mode 100755 587/CH10/EX10.3/example10_3.sce create mode 100755 587/CH10/EX10.4/example10_4.sce create mode 100755 587/CH10/EX10.5/example10_5.sce create mode 100755 587/CH10/EX10.6/example10_6.sce create mode 100755 587/CH10/EX10.7/example10_7.sce create mode 100755 587/CH10/EX10.8/example10_8.sce create mode 100755 587/CH11/EX11.1/example11_1.sce create mode 100755 587/CH11/EX11.10/example11_10.sce create mode 100755 587/CH11/EX11.2/Example11_2.sce create mode 100755 587/CH11/EX11.3/example11_3.sce create mode 100755 587/CH11/EX11.4/example11_4.sce create mode 100755 587/CH11/EX11.5/example11_5.sce create mode 100755 587/CH11/EX11.6/example11_6.sce create mode 100755 587/CH11/EX11.7/example11_6.sce create mode 100755 587/CH11/EX11.8/example11_8.sce create mode 100755 587/CH11/EX11.9/example11_9.sce create mode 100755 587/CH12/EX12.1/example12_1.sce create mode 100755 587/CH12/EX12.2/example12_2.sce create mode 100755 587/CH12/EX12.3/example12_3.sce create mode 100755 587/CH12/EX12.4/example12_4.sce create mode 100755 587/CH12/EX12.5/example12_5.sce create mode 100755 587/CH12/EX12.6/example12_6.sce create mode 100755 587/CH13/EX13.1/example13_1.sce create mode 100755 587/CH13/EX13.10/example13_10.sce create mode 100755 587/CH13/EX13.11/example13_11.sce create mode 100755 587/CH13/EX13.12/example13_12.sce create mode 100755 587/CH13/EX13.13/example13_13.sce create mode 100755 587/CH13/EX13.14/example13_14.sce create mode 100755 587/CH13/EX13.15/example13_15.sce create mode 100755 587/CH13/EX13.2/example13_2.sce create mode 100755 587/CH13/EX13.3/example13_3.sce create mode 100755 587/CH13/EX13.5/example13_5.sce create mode 100755 587/CH13/EX13.6/example13_6.sce create mode 100755 587/CH13/EX13.7/example13_7.sce create mode 100755 587/CH13/EX13.8/example13_8.sce create mode 100755 587/CH13/EX13.9/example13_9.sce create mode 100755 587/CH14/EX14.1/example14_1.sce create mode 100755 587/CH14/EX14.10/example14_10.sce create mode 100755 587/CH14/EX14.11/example14_11.sce create mode 100755 587/CH14/EX14.12/example14_12.sce create mode 100755 587/CH14/EX14.13/example14_13.sce create mode 100755 587/CH14/EX14.2/example14_2.sce create mode 100755 587/CH14/EX14.3/example14_3.sce create mode 100755 587/CH14/EX14.4/example14_4.sce create mode 100755 587/CH14/EX14.5/example14_5.sce create mode 100755 587/CH14/EX14.6/example14_6.sce create mode 100755 587/CH14/EX14.7/example14_7.sce create mode 100755 587/CH14/EX14.8/example14_8.sce create mode 100755 587/CH14/EX14.9/example14_9.sce create mode 100755 587/CH2/EX2.10/example2_10.sce create mode 100755 587/CH2/EX2.11/example2_11.sce create mode 100755 587/CH2/EX2.13/example2_13.sce create mode 100755 587/CH2/EX2.14/example2_14.sce create mode 100755 587/CH2/EX2.15/example2_15.sce create mode 100755 587/CH2/EX2.16/example2_16.sce create mode 100755 587/CH2/EX2.17/example2_17.sce create mode 100755 587/CH2/EX2.18/example2_18.sce create mode 100755 587/CH2/EX2.19/example2_19.sce create mode 100755 587/CH2/EX2.2/example2_2.sce create mode 100755 587/CH2/EX2.21/example2_21.sce create mode 100755 587/CH2/EX2.4/example2_4.sce create mode 100755 587/CH2/EX2.5/example2_5.sce create mode 100755 587/CH2/EX2.6/example2_6.sce create mode 100755 587/CH2/EX2.7/example2_7.sce create mode 100755 587/CH2/EX2.8/example2_8.sce create mode 100755 587/CH2/EX2.9/example2_9.sce create mode 100755 587/CH3/EX3.1/example3_1.sce create mode 100755 587/CH3/EX3.10/example3_10.sce create mode 100755 587/CH3/EX3.11/example3_11.sce create mode 100755 587/CH3/EX3.12/example3_12.sce create mode 100755 587/CH3/EX3.13/example3_13.sce create mode 100755 587/CH3/EX3.14/example3_14.sce create mode 100755 587/CH3/EX3.15/example3_15.sce create mode 100755 587/CH3/EX3.16/example3_16.sce create mode 100755 587/CH3/EX3.17/example3_17.sce create mode 100755 587/CH3/EX3.2/example3_2.sce create mode 100755 587/CH3/EX3.3/example3_3.sce create mode 100755 587/CH3/EX3.4/example3_4.sce create mode 100755 587/CH3/EX3.5/example3_5.sce create mode 100755 587/CH3/EX3.6/example3_6.sce create mode 100755 587/CH3/EX3.7/example3_7.sce create mode 100755 587/CH3/EX3.8/example3_8.sce create mode 100755 587/CH3/EX3.9/example3_9.sce create mode 100755 587/CH4/EX4.1/example4_1.sce create mode 100755 587/CH4/EX4.10/example4_10.sce create mode 100755 587/CH4/EX4.11/example4_11.sce create mode 100755 587/CH4/EX4.2/example4_2.sce create mode 100755 587/CH4/EX4.3/example4_3.sce create mode 100755 587/CH4/EX4.4/example4_4.sce create mode 100755 587/CH4/EX4.5/example4_5.sce create mode 100755 587/CH4/EX4.6/example4_6.sce create mode 100755 587/CH4/EX4.7/example4_7.sce create mode 100755 587/CH4/EX4.8/example4_8.sce create mode 100755 587/CH4/EX4.9/example4_9.sce create mode 100755 587/CH5/EX5.1/example5_1.sce create mode 100755 587/CH5/EX5.2/example5_2.sce create mode 100755 587/CH5/EX5.3/example5_3.sce create mode 100755 587/CH5/EX5.4/example5_4.sce create mode 100755 587/CH5/EX5.5/example5_5.sce create mode 100755 587/CH5/EX5.6/example5_6.sce create mode 100755 587/CH6/EX6.1/example6_1.sce create mode 100755 587/CH6/EX6.2/example6_2.sce create mode 100755 587/CH7/EX7.1/example7_1.sce create mode 100755 587/CH7/EX7.2/example7_2.sce create mode 100755 587/CH7/EX7.3/example7_3.sce create mode 100755 587/CH7/EX7.4/example7_4.sce create mode 100755 587/CH7/EX7.5/example7_5.sce create mode 100755 587/CH7/EX7.6/example7_6.sce create mode 100755 587/CH7/EX7.7/example7_7.sce create mode 100755 587/CH7/EX7.8/example7_8.sce create mode 100755 587/CH7/EX7.9/example7_9.sce create mode 100755 587/CH8/EX8.1/example8_1.sce create mode 100755 587/CH8/EX8.2/example8_2.sce create mode 100755 587/CH8/EX8.3/example8_3.sce create mode 100755 587/CH8/EX8.4/example8_4.sce create mode 100755 587/CH8/EX8.5/example8_5.sce create mode 100755 587/CH8/EX8.6/example8_6.sce create mode 100755 587/CH8/EX8.7/example8_7.sce create mode 100755 587/CH8/EX8.8/example8_8.sce create mode 100755 587/CH9/EX9.1/example9_1.sce create mode 100755 587/CH9/EX9.2/example9_2.sce create mode 100755 587/CH9/EX9.3/example9_3.sce create mode 100755 587/CH9/EX9.4/example9_4.sce create mode 100755 587/CH9/EX9.5/example9_5.sce create mode 100755 587/CH9/EX9.6/example9_6.sce create mode 100755 587/CH9/EX9.7/example9_7.sce create mode 100755 587/CH9/EX9.8/example9_8.sce create mode 100755 587/CH9/EX9.9/example9_9.sce (limited to '587') diff --git a/587/CH1/EX1.1/example1_1.sce b/587/CH1/EX1.1/example1_1.sce new file mode 100755 index 000000000..16991bac9 --- /dev/null +++ b/587/CH1/EX1.1/example1_1.sce @@ -0,0 +1,32 @@ +clear; +clc; + +//Example 1.1(Heating of a copper ball) + +//(a) +//density of the copper ball +rho= 8950;//[kg/m^3] +//Diameter of the copper ball +D=0.1;//[m] +//mass of the ball +m=rho*(%pi/6)*(D^3);//[kg] +//Specific Heat of copper +Cp=0.395;//[kJ/Kg/m^3] +//Initial Temperature +T1=100;//[degree C] +//Final Temperature +T2=150;//[degree C] +// The amount of heat transferred to the copper ball is simply the change in it's internal energy and is given by +// Energy transfer to the system=Energy increase of the system +Q=(m*Cp*(T2-T1)); +disp("kJ",Q,"Heat needs to be transferred to the copper ball to heat it from 100 to 150 degree celsius is ") +//b +//Time interval for which the ball is heated +dT=1800;//[seconds] +Qavg=(Q/dT)*1000;//[W] +disp("W",Qavg,"Average Heat Transfer by the iron ball is ") + +//(c) +//Heat Flux +qavg=(Qavg/(%pi*(D^2)));//[W/m^2] +disp("W/m^2",qavg,"Average flux is") diff --git a/587/CH1/EX1.10/example1_10.sce b/587/CH1/EX1.10/example1_10.sce new file mode 100755 index 000000000..1341a6ed4 --- /dev/null +++ b/587/CH1/EX1.10/example1_10.sce @@ -0,0 +1,17 @@ +clear; +clc; + +//Example1.10[Heat Loss from a Person] +//Given:- +T_room=20+273;//Temperature of breezy room[K] +T_outr=29+273;//Average outer surface temperature of the person[K] +As=1.6;//Exposed Surface Area[m^2] +h=6;//Convection Heat transfer coefficient[W/m^2.K] +e=0.95;//Emissivity of person +sigma=5.67*(10^(-8));//Stephan's constant[W/m^2.degree Celcius] +Q_conv=h*As*(T_outr-T_room);//[W] +disp("W",Q_conv,"Rate of convection heat transfer from the person to the air in the room is") +Q_rad=e*sigma*As*((T_outr^4)-(T_room^4));//[W] +disp("W",Q_rad,"The rate of convection heat transfer from the person to the surrounding walls,cieling,fllor is") +Q_total=Q_conv+Q_rad;//[W] +disp("W",round(Q_total),"The rate of total heat transfer from the body is ") \ No newline at end of file diff --git a/587/CH1/EX1.11/example1_11.sce b/587/CH1/EX1.11/example1_11.sce new file mode 100755 index 000000000..4e1a2ca97 --- /dev/null +++ b/587/CH1/EX1.11/example1_11.sce @@ -0,0 +1,36 @@ +clear; +clc; + +//Example1.11[Heat transfer between two Isothermal Plates] +//Given:- +T1=300,T2=200;//Temperatures of two large parallel isothermal plates[K] +L=0.01;//distance between both plates[m] +e=1;//Emissivity of plates +A=1;//Surface area of plates[m^2] +T_avg=(T1+T2)/2;//Average temperature[K] +sigma=5.67*(10^(-8));//Stefan's constant[W/m^2.K^4] +//Solution (a)[space between plates is filled with air] +k_air=0.0219;//The thermal conductivity of aair at the average temperature[W/m.K] +Q_cond=k_air*A*(T1-T2)/L;//[W] +Q_rad=e*sigma*A*((T1^4)-(T2^4));//[W] +disp("W",round(Q_rad),"and",Q_cond,"The rates of conduction and radiation heat transfer between the plates through the air layer are respectively") +Q_total_a=Q_cond+Q_rad;//[W] +disp("W",round(Q_total_a),"Net rate of heat transfer is") +disp("The heat transfer rate in reality will be higher because of the natural convection currents that are likely to occur in the air space between the plates") +//Solution (b)[space between the plates is evacutaed] +disp("when the air space b/w the plates is evacuted there is no conduction or convection,and the only heat transfer between the plates will be by radiation. ") +disp("Therefore") +Q_total_b=Q_rad;//[W] +disp("W",round(Q_total_b),"Net rate of heat transfer is") +//Solution (c)[space between the plates is filled with urethane insulation] +k_insu=0.026;//At average temperature thermal conductivity of urethane insulation [W/m.K] +disp("An opaque solid material placed b/w the two plates blocks direct radiation heat transfer between the plates") +Q_cond_c=k_insu*A*(T1-T2)/L;//[W] +Q_total_c=Q_cond_c;//[W] +disp("W",round(Q_total_c),"The net rate of heat transfer through the urethane insulation is") +//Solution (d)[the distance between the plates is filled with superinsulation] +k_super=0.00002;//At average temperature thermal conductvity of superinsulation[W/m.K] +disp("The layers of superinsulation prevent any direct radiation heat transfer between the plates") +Q_cond_d=k_super*A*(T1-T2)/L;//[W] +Q_total_d=Q_cond_d;//[W] +disp("W",Q_total_d,"The net rate of heat transfer through the layer of superinsulation is") diff --git a/587/CH1/EX1.13/example1_13.sce b/587/CH1/EX1.13/example1_13.sce new file mode 100755 index 000000000..88d6c4fd6 --- /dev/null +++ b/587/CH1/EX1.13/example1_13.sce @@ -0,0 +1,13 @@ +clear; +clc; + +//Example1.13[Heating of a Plate by Solar Energy] +//Given:- +a=0.6;//absorptivity of exposed surface of plate +q_incident=700;//Rate at which solar radiation incident on the plate [W/m^2] +T_surr=25+273;//Surrounding air temperature[K] +h=50;//Combined radiation and convection heat transfer coefficient[W/m^2.K] +//Solution +//Temperature keeps on increasing till a point comes at which the rate of heat loss from the plate equals the rate of solar energy absorbed, and the temperature of the plate no longer changes +T_surface=T_surr+(a*(q_incident)/h);//[K] +disp("degree Celcius",T_surface-273,"The plate surface temperature is") \ No newline at end of file diff --git a/587/CH1/EX1.14/example1_14.sce b/587/CH1/EX1.14/example1_14.sce new file mode 100755 index 000000000..80992ae1b --- /dev/null +++ b/587/CH1/EX1.14/example1_14.sce @@ -0,0 +1,10 @@ +clear; +clc; + +//Example1.14[Non-linear equation in two variable] +//x1=x, x2=y +function[f]=f2(x) +f(1)=x(1)-x(2)-4; +f(2)=x(1)^2+x(2)^2-x(1)-x(2)-20; +deff('[f]=f2(x)',['f_1=x(1)-x(2)-4','f_2=x(1)^2+x(2)^2-x(1)-x(2)-20']) +//To get the desired output assign an initial value such as x0=[1,1], [xs,fxs,m]=fsolve(x0',f2) diff --git a/587/CH1/EX1.2/example1_2.sce b/587/CH1/EX1.2/example1_2.sce new file mode 100755 index 000000000..5bf339169 --- /dev/null +++ b/587/CH1/EX1.2/example1_2.sce @@ -0,0 +1,19 @@ +clear; +clc; + +//Example 1.2(Heating of water in an Electric Teapot) +//Mass of liquid water +m1=1.2,m2=0.5;//[Kg] +//Initial Temperature +t1=15;//[Degree Celcius] +//Final Temperature +t2=95;//[Degree Celcius] +//Specific heat of water +cp1=4.186;//[kJ/kG.K] +//Specific heat capacity of teapot +cp2=.7;//[] +Em=(m1*cp1*(t2-t1))+(m2*cp2*(t2-t1));//[kJ] +//Rating of Electric Heating Equipment +Em1=1.2;//[kJ/s] +dt=(Em/Em1)/60;//[seconds] +disp("minutes",round(dt),"of heat is","kJ",Em,"Time needed for this heater to supply ") \ No newline at end of file diff --git a/587/CH1/EX1.3/example1_3.sce b/587/CH1/EX1.3/example1_3.sce new file mode 100755 index 000000000..6076aa96f --- /dev/null +++ b/587/CH1/EX1.3/example1_3.sce @@ -0,0 +1,24 @@ +clear; +clc; + +//Example1.3[Heat Loss from Heating Ducts in a Basement] +//Given:- +T_in=60+273;//Temperature of hot air while entering the duct[K] +T_out=54+273;//Temperature of hot air while leaving the duct[K] +T_avg=(T_in+T_out)/2;//Average temperature of air[K] +Cp=1.007;//[kJ/kg] +disp("kJ/kg",Cp,"K is",T_avg,"The constant pressure specific heat of air at the average temperature of") +P=100;//Pressure of air while entering the duct[kPa] +R=0.287;//Universal Gas Constant[kPa.(m^3/kg).K] +v=5;//Average velocity of flowing air[m/s] +neta=0.8;//Efficiency of natural gas furnace +ucost=1.60;//Cost of natural gas in that area[$/therm],where 1therm=105,500kJ +//Solution;- +rho=P/(R*T_in);//The density of air at the inlet conditions is[kg/m^3] +Ac=0.20*0.25;//Cross sectional area of the duct[m^2] +m_=rho*v*Ac;//[kg/s] +disp("kg/s",m_,"mass flow rate of air through the duct is") +Q_loss=m_*Cp*(T_in-T_out);//[kJ/s] +disp("kJ/s",Q_loss,"The rate of heat loss by the air is") +cost=(Q_loss*3600)*(ucost)*(1/105500)*(1/neta);//[$/h] +disp("per hour",cost,"$"," Cost of heat loss to the home owner is") \ No newline at end of file diff --git a/587/CH1/EX1.4/example1_4.sce b/587/CH1/EX1.4/example1_4.sce new file mode 100755 index 000000000..1d7eb09a0 --- /dev/null +++ b/587/CH1/EX1.4/example1_4.sce @@ -0,0 +1,30 @@ +clear; +clc; + +//Example1.4 (Electric Heating of a House at High Elevation) + +//(a) +t1=10+273;//Initial temperature of house[K] +t2=20+273;//Temperature after turning on heater[K] +tavg=(t1+t2)/2;//Average temperature[K] +cp=1.007;//[kJ/kg.K] +cv=.720;//[kJ/kg.K] +disp("kJ/kg.K",cp,"and",cv,"K",tavg,"at the average temperature of","The specific heat capacities of air") +A=200;//The floor area[m^2] +h=3;//Height of room[m] +V=A*h;//Volume of the air in the house[m^3] +P=84.6;//Pressure [kPa] +R=0.287;//Universal gas constant[kPa.m^3/kg.K] +m=(P*V)/(R*t1);//[kg] +disp("kg",m,"Mass of air in the room is") +Eincv=m*cv*(t2-t1); +disp("kJ",Eincv,"The amount of energy transferred to air at constant volume is ") +u_cost=0.075;//Unit cost of energy[$/kWh] +Cost1=(Eincv*u_cost)/(3600);//[$] +disp(Cost1,"Cost of Energy is $") + +//(b) +Eincp=m*cp*(t2-t1);//[kJ] +disp("kJ",Eincp,"The amount of energy transferred to air at constant is ") +Cost2=(Eincp*u_cost)/3600;//[$] +disp(Cost2,"Cost of Energy is $") \ No newline at end of file diff --git a/587/CH1/EX1.5/example1_5.sce b/587/CH1/EX1.5/example1_5.sce new file mode 100755 index 000000000..23b1602a8 --- /dev/null +++ b/587/CH1/EX1.5/example1_5.sce @@ -0,0 +1,20 @@ +clear; +clc; + +//Example1.5 (The cost of Heat loss through a Roof) + +//(a) +k=0.8;//The thermal conductivity of the roof[W/m.degree.C] +A=6*8;//Area of the roof[m^2] +t1=15;//temperature of inner surface roof[degree C] +t2=4;//temperature of outer surface roof[degree C] +L=0.25;//thickness of roof[m] +Q_=k*A*(t1-t2)/L;//[W] +disp("W",Q_,"The steady rate of heat transfer through the roof is") + +//(b) +dt=10;//time period[h] +Q=Q_*dt/1000;//[kWh] +u_cost=0.08;//Unit cost of energy[$/kWh] +Cost=Q*u_cost;//[$] +disp(Cost,"and its cost is $","kWh",Q,"The amount of heat lost through the roof") diff --git a/587/CH1/EX1.6/example1_6.sce b/587/CH1/EX1.6/example1_6.sce new file mode 100755 index 000000000..95b0b39a0 --- /dev/null +++ b/587/CH1/EX1.6/example1_6.sce @@ -0,0 +1,16 @@ +clear; +clc; + +//Example1.6 (Measuring the Thermal Conductivity of a Material) +V=110;//Voltage diffrence b/w thermocouples[V] +I=0.4;//Current drawn by thermocouples[A] +We=V*I;//[W] +disp("W",We,"The electrical power consumed by the resistance heater and converted to heat is") +q_=We/2;//[W] +disp("W",q_,"The rate of heat flow through each sample") +dT=15;//Temperature drop in the direction of heat flow[degree C] +l=.03;//length for which temperature change is measured[m] +D=.05;//diameter of cylinder[m] +a=(%pi*D^2)/4;//Cross-sectional area of the cylinder[m^2] +K=(q_*l)/(a*dT);//[W/m.degreeC] +disp("W/mC",K,"The thermal conductivity of the sample is") diff --git a/587/CH1/EX1.7/example1_7.sce b/587/CH1/EX1.7/example1_7.sce new file mode 100755 index 000000000..c710e0b8c --- /dev/null +++ b/587/CH1/EX1.7/example1_7.sce @@ -0,0 +1,10 @@ +clear; +clc; + +//Example1.7[Conversion between SI and English Units] +W_to_btu_p_h=3.41214;//Conersion from Watt to btu per hour[btu/h] +m_to_ft=3.2808;//Conversion from meter to english unit feet[ft] +deg_C_to_deg_F=1.8;//Conversion from degree Celcius to degree Farenhiet +W_per_m_deg_C=W_to_btu_p_h/(m_to_ft*deg_C_to_deg_F);//Conversion factor for 1W/m.degree Celcius[Btu/h.ft.degree Farenhiet] +k_brick=0.72*W_per_m_deg_C;//[Btu/h.ft.degree Farenhiet] +disp("Btu/h.ft.degree Farenhiet",k_brick,"The thermal conductivity of the brick in English units is") diff --git a/587/CH1/EX1.8/example1_8.sce b/587/CH1/EX1.8/example1_8.sce new file mode 100755 index 000000000..56161439a --- /dev/null +++ b/587/CH1/EX1.8/example1_8.sce @@ -0,0 +1,20 @@ +clear; +clc; + +//Example1.8[Measuring Convection Heat Transfer coefficient] +//Given:- +T_ambient=15;//Temperature of room[degree Celcius] +T_surface=152;//Temperature of surface of wire[degree Celcius] +L=2;//Length of wire[m] +D=0.003;//Diameter of wire[m] +V=60;//Voltage drop across the current wire[Volts] +I=1.5;//Current flowing in the wire[amp] +//Solution:- +//When steady conditions are reached, the rate of heat loss from the wire equals the rate of heat generation in the wire as a result of resistance heating +Q_=V*I;//[W] +disp("W",Q_,"The rate of heat generated in the wire as a result of resistance heating is") +As=%pi*D*L;//Surface Area of the wire[m^2] +//Using Newton's Law of Cooling +//and assuming all heat loss in wire to occur by convection +h=Q_/(As*(T_surface-T_ambient));//[W/m^2.degree Celcius] +disp("W/m^2.degree Celcius",h,"The convection Heat Transfer coefficient is" ) diff --git a/587/CH1/EX1.9/example1_9.sce b/587/CH1/EX1.9/example1_9.sce new file mode 100755 index 000000000..3fba653e8 --- /dev/null +++ b/587/CH1/EX1.9/example1_9.sce @@ -0,0 +1,15 @@ +clear; +clc; + +//Example1.9[Radiation Effect on Thermal Comfort] +//Given:- +T_room=22+273;//Temperature fo room[K] +T_wntr=10+273;//Average Temperature of inner surfaces of walls,floors and the cieling in winter[K] +T_smmr=25+273;//Average Temperature of inner surfaces of walls,floors and the cieling in summer[K] +T_outr=30+273;//Average outer surface temperature of the person[K] +A=1.4;//The exposed surface area[m^2] +e=0.95;//Emissivity of person +sigma=5.67*(10^(-8));//Stefan's constant +Q_rad_wntr=e*sigma*A*((T_outr^4)-(T_wntr^4));//[W] +Q_rad_smmr=e*sigma*A*((T_outr^4)-(T_smmr^4));//[W] +disp("W",Q_rad_smmr,"and",round(Q_rad_wntr),"The net rates of radiation heat transfer from the body to the surrounding walls,ceiling, and floor in winter and summer are respectively") diff --git a/587/CH10/EX10.1/example10_1.sce b/587/CH10/EX10.1/example10_1.sce new file mode 100755 index 000000000..2c7b10384 --- /dev/null +++ b/587/CH10/EX10.1/example10_1.sce @@ -0,0 +1,25 @@ +clear; +clc; + +//Example10.1[Nucleate Boiling of Water in a Pan] +Ts=108;//Temp of surface of bottom of pan[degree Celcius] +Tsat=100;//Saturation temp of water[degree Celcius] +D=0.3;//Diameter[m] +//Properties of water at the saturation temp +rho_l=957.9;//Density of liquid[kg/m^3] +rho_v=0.6;//Density of vapour[kg/m^3] +Pr_l=1.75;//Prandtl no of liquid +mu_l=0.282*10^(-3);//Viscosity of liquid[kg/m.s] +Cp_l=4217;//Specific Heat of liquid[J/kg.degree Celcius] +h_fg=2257*10^3;//[J/kg] +sigma=0.0589;//[N/m] +g=9.81;//Acc due to gravity[m/s^2] +Csf=0.0130,n=1.0; +//Solution(a):- +q_nuc=mu_l*h_fg*((g*(rho_l-rho_v)/sigma)^(1/2))*((Cp_l*(Ts-Tsat)/(Csf*h_fg*(Pr_l^n)))^3);//[W/m^2] +A=%pi*(D^2)/4;//Surface Area of bottom of the pan[m^2] +Q_boiling=A*q_nuc;//[W] +disp("W",Q_boiling,"(a) The rate of heat transfer during nucleate boiling becomes ") +//Solution(b):- +m=Q_boiling/h_fg;//[kg/s] +disp("kg/s",m,"The rate of Evaporation of water is") diff --git a/587/CH10/EX10.2/example10_2.sce b/587/CH10/EX10.2/example10_2.sce new file mode 100755 index 000000000..e949f861b --- /dev/null +++ b/587/CH10/EX10.2/example10_2.sce @@ -0,0 +1,24 @@ +clear; +clc; + +//Example10.2[Peak Heat Flux in Nucleate Boiling] +D=0.01;//[m] +Tsat=100;//Saturation Temperature[degree Celcius] +sigma=0.0589;//[N/m] +//Properties of water at saturation temperature +rho_l=957.9;//[kg/m^3] +rho_v=0.6;//[kg/m^3] +h_fg=2257*10^3;//[J/kg] +mu_l=0.282*10^(-3);//[kg/m.s] +Pr_l=1.75;//Prandtl number +Cp_l=4217;//[J/kg.degree Celcius] +Csf=0.0130,n=1.0; +g=9.81;//[m/s^2] +//Solution:- +L_=(D/2)*((g*(rho_l-rho_v)/sigma)^(1/2));//dimensionless Parameter +//For this value of L_ we have +C_cr=0.12;//Constant +q_max=C_cr*h_fg*((sigma*g*(rho_v^2)*(rho_l-rho_v))^(1/4));//[W/m^2] +disp("W/m^2",q_max,"The maximum or critical heat flux is") +Ts=(((q_max/(mu_l*h_fg*((g*(rho_l-rho_v)/sigma)^(1/2))))^(1/3))*(Csf*h_fg*Pr_l^n)/Cp_l)+Tsat;//[degree Celcius] +disp("degree Celcius",round(Ts),"The surface temperature is") \ No newline at end of file diff --git a/587/CH10/EX10.3/example10_3.sce b/587/CH10/EX10.3/example10_3.sce new file mode 100755 index 000000000..0d6693bde --- /dev/null +++ b/587/CH10/EX10.3/example10_3.sce @@ -0,0 +1,28 @@ +clear; +clc; + +//Example10.3[Film Boiling of Water on a Heating Element] +//Given:- +D=0.005;//[m] +e=0.05;//Emissivity +Ts=350;//Surface temperature[degree Celcius] +Tsat=100;//[degree Celcius] +Tf=(Ts+Tsat)/2;//[degree Celcius] +g=9.81;//[m/s^2] +//Properties of water at Tsat +rho_l=957.9;//[kg/m^3] +h_fg=2257*10^3;//[J/kg] +//Properties of vapor at film temp +rho_v=0.444;//[kg/m^3] +Cp_v=1951;//[J/kg.degree Celcius] +mu_v=1.75*10^(-5);//[kg/m.s] +k_v=0.0388;//[W/m.degree Celcius] +//Solution:- +q_film=0.62*(((g*(k_v^3)*rho_v*(rho_l-rho_v)*(h_fg+(0.4*Cp_v*(Ts-Tsat))))/(mu_v*D*(Ts-Tsat)))^(1/4))*(Ts-Tsat);//[W/m^2] +disp("W/m^2)",q_film,"The film boiling heat flux is") +q_rad=e*(5.67*10^(-8))*(((Ts+273)^4)-((Tsat+273)^4));//[W/m^2] +disp("W/m^2",q_rad,"The radiation heat flux is") +q_total=q_film+(3/4)*q_rad;//[W/m^2] +disp("W/m^2",q_total,"The total heat flux is") +Q_total=(%pi*D*1)*q_total;//[W] +disp("W",Q_total,"The rate of heat transfer from the heating element to the water is") diff --git a/587/CH10/EX10.4/example10_4.sce b/587/CH10/EX10.4/example10_4.sce new file mode 100755 index 000000000..c4b5fca61 --- /dev/null +++ b/587/CH10/EX10.4/example10_4.sce @@ -0,0 +1,31 @@ +clear; +clc; + +//Example10.4[Condensation of steam on a Vertical Plate] +//Given:- +Tsat=100,Ts=80;//[degree Celcius] +Tf=(Ts+Tsat)/2;//[degree Celcius] +L=2,w=3;//Dimensions of Plate[m] +g=9.81;//[m/s^2] +//Properties of water at Tsat +h_fg=2257*10^3;//[J/kg] +rho_v=0.60;//[kg/m^3] +//Properties of liquid water at Tf +rho_l=965.3;//[kg/m^3] +mu_l=0.315*10^(-3);//[kg/m.s +Cp_l=4206;//[J/kg.degree Celcius] +k_l=0.675;//[W/m.degree Celcius] +nu_l=0.326*10^(-6);//[m^2/s] +//Solution (a) +h_fg_m=h_fg+0.68*Cp_l*(Tsat-Ts);//[J/kg] +disp("J/kg",h_fg_m,"The modified latent heat of vapourization is") +Re=((4.81+((3.70*L*k_l*(Tsat-Ts)*((g/nu_l^2)^(1/3)))/(mu_l*h_fg_m)))^(0.820)); +disp(ceil(Re),"For wavy laminar flow Reynolds number is") +h=(Re*k_l*((g/nu_l^2)^(1/3)))/((1.08*(Re^(1.22)))-5.2);//[W/m^2.degree Celcius] +disp("W/m^2.degree Celcius",h,"The conensation heat transfer coefficient is") +As=w*L;//[m^2] +Q=h*As*(Tsat-Ts);//[W] +disp("W",Q,"The rate of heat transfer during condensation process is") +//Solution (b) +m=Q/h_fg_m;//[kg/s] +disp("kg/s",m,"The rate of condensation of steam is") diff --git a/587/CH10/EX10.5/example10_5.sce b/587/CH10/EX10.5/example10_5.sce new file mode 100755 index 000000000..28a973985 --- /dev/null +++ b/587/CH10/EX10.5/example10_5.sce @@ -0,0 +1,32 @@ +clear; +clc; + +//Example10.5[Condensation of steam on a Vertical Tilted Plate] +//Given:- +Tsat=100,Ts=80;//[degree Celcius] +Tf=(Ts+Tsat)/2;//[degree Celcius] +L=2,w=3;//Dimensions of Plate[m] +g=9.81;//[m/s^2] +//Properties of water at Tsat +h_fg=2257*10^3;//[J/kg] +rho_v=0.60;//[kg/m^3] +//Properties of liquid water at Tf +rho_l=965.3;//[kg/m^3] +mu_l=0.315*10^(-3);//[kg/m.s +Cp_l=4206;//[J/kg.degree Celcius] +k_l=0.675;//[W/m.degree Celcius] +nu_l=0.326*10^(-6);//[m^2/s] +theta=(%pi/6);//Angle at which plate is tilted[radians] +//Solution (a) +h_fg_m=h_fg+0.68*Cp_l*(Tsat-Ts);//[J/kg] +disp("J/kg",h_fg_m,"The modified latent heat of vapourization is") +Re=((4.81+((3.70*L*k_l*(Tsat-Ts)*((g/nu_l^2)^(1/3)))/(mu_l*h_fg_m)))^(0.820)); +disp(ceil(Re),"For wavy laminar flow Reynolds number is") +h=((Re*k_l*((g/nu_l^2)^(1/3)))/((1.08*(Re^(1.22)))-5.2))*((cos(theta))^(1/4));//[W/m^2.degree Celcius] +disp("W/m^2.degree Celcius",h,"The conensation heat transfer coefficient is") +As=w*L;//[m^2] +Q=h*As*(Tsat-Ts);//[W] +disp("W",Q,"The rate of heat transfer during condensation process is") +//Solution (b) +m=Q/h_fg_m;//[kg/s] +disp("kg/s",m,"The rate of condensation of steam is") diff --git a/587/CH10/EX10.6/example10_6.sce b/587/CH10/EX10.6/example10_6.sce new file mode 100755 index 000000000..44924ec6b --- /dev/null +++ b/587/CH10/EX10.6/example10_6.sce @@ -0,0 +1,29 @@ +clear; +clc; + +//Example10.6[Condensation of Steam on horizontal Tubes] +//Given:- +Tsat=40;//[degree Celcius] +D=0.03;//[m] +Ts=30;//Outer Surface temperature of tube[degree Celcius] +Tf=(Ts+Tsat)/2;//Film Temperature[degree Celcius] +g=9.81;//[m/s^2] +//Properties of water at the saturation temp +h_fg=2407*10^3;//[J/kg] +rho_v=0.05;//[kg/m^3] +//Properties of liquid water at the film temperature +rho_l=994;//[kg/m^3] +Cp_l=4178;//[J/kg.degree Celcius] +mu_l=0.720*10^(-3);//[kg/m.s] +k_l=0.623;//[W/m.degree Celcius] +//Solution (a) +h_fg_m=h_fg+0.68*Cp_l*(Tsat-Ts);//[J/kg] +disp("J/kg",h_fg_m,"(a) The modified latent heat of vapourisation is") +h_hori=0.729*(((g*(rho_l^2)*h_fg_m*(k_l^3))/(mu_l*D*(Tsat-Ts)))^(1/4));//[W/m^2.degree Celcius] +disp("W/m^2.degree Celcius",h_hori,"The heat transfer coefficient for condensation on a single horizontal tube is") +As=%pi*D*1;//[m^2] +Q=h_hori*As*(Tsat-Ts);//[W] +disp("W",Q,"The rate of heat transfer during condensation Process is") +//Solution (b) +m=Q/h_fg_m;//[kg/s] +disp("kg/s",m,"(b) The rate of condensation of steam is") \ No newline at end of file diff --git a/587/CH10/EX10.7/example10_7.sce b/587/CH10/EX10.7/example10_7.sce new file mode 100755 index 000000000..44fba2cff --- /dev/null +++ b/587/CH10/EX10.7/example10_7.sce @@ -0,0 +1,31 @@ +clear; +clc; + +//Example10.7[Condensation of Steam on horizontal Tube Banks] +//Given:- +Tsat=40;//[degree Celcius] +D=0.03;//[m] +Ts=30;//Outer Surface temperature of tube[degree Celcius] +Tf=(Ts+Tsat)/2;//Film Temperature[degree Celcius] +g=9.81;//[m/s^2] +N=3;//No of tubes in a vertical tier +N_total=12;//Total number of tubes +//Properties of water at the saturation temp +h_fg=2407*10^3;//[J/kg] +rho_v=0.05;//[kg/m^3] +//Properties of liquid water at the film temperature +rho_l=994;//[kg/m^3] +Cp_l=4178;//[J/kg.degree Celcius] +mu_l=0.720*10^(-3);//[kg/m.s] +k_l=0.623;//[W/m.degree Celcius] +//Solution (a) +h_fg_m=h_fg+0.68*Cp_l*(Tsat-Ts);//[J/kg] +disp("J/kg",h_fg_m,"(a) The modified latent heat of vapourisation is") +h_hori_N=(0.729*(((g*(rho_l^2)*h_fg_m*(k_l^3))/(mu_l*D*(Tsat-Ts)))^(1/4)))*(1/(N^(1/4)));//[W/m^2.degree Celcius] +disp("W/m^2.degree Celcius",h_hori_N,"The heat transfer coefficient for condensation 12 horizontal tube is") +As=%pi*D*1*N_total;//[m^2] +Q=h_hori_N*As*(Tsat-Ts);//[W] +disp("W",Q,"The rate of heat transfer during condensation Process is") +//Solution (b) +m=Q/h_fg_m;//[kg/s] +disp("kg/s",m,"(b) The rate of condensation of steam is") \ No newline at end of file diff --git a/587/CH10/EX10.8/example10_8.sce b/587/CH10/EX10.8/example10_8.sce new file mode 100755 index 000000000..982c1fda8 --- /dev/null +++ b/587/CH10/EX10.8/example10_8.sce @@ -0,0 +1,18 @@ +clear; +clc; + +//Example10.8[Replacing a Heat Pipe by a Copper Rod] +//Given:- +L=0.3;//[m] +D=0.006;//[m] +Q=180;//[W] +del_T=3;//Temperature Difference [degree Celcius] +//Properties of copper at room temperature +rho=8933;//[kg/m^3] +k=401;//[W/m.degree Celcius] +//Solution:- +A=Q*L/(k*del_T);//[m^2] +d=sqrt(4*A/%pi);//[m] +disp("cm",ceil(100*d),"The diameter of the copper pipe is") +m=rho*A*L;//[kg] +disp("kg",round(m),"Mass of the copper rod is") \ No newline at end of file diff --git a/587/CH11/EX11.1/example11_1.sce b/587/CH11/EX11.1/example11_1.sce new file mode 100755 index 000000000..125e88ad8 --- /dev/null +++ b/587/CH11/EX11.1/example11_1.sce @@ -0,0 +1,38 @@ +clear; +clc; + +//Example11.1[Overall Heat Transfer Coefficient of a Heat Exchanger] +D_in=0.02;//Diameter of inner tubes[m] +Di_out=0.03;//Inner Diameter of Outer tubes[m] +mw=0.5;//Mass Flow Rate of water[kg/s] +mo=0.8;//Mass Flow rate of oil[kg/s] +Tw=45;//Average Temp of water[degree Celcius] +To=80;//Average Temp of oil [degree Celcius] +//Properties of water at Tw +rho_w=990.1;//[kg/m^3] +Pr_w=3.91;//Prandtl Number +k_w=0.637;//[W/m.degree Celcius] +nu_w=0.602*10^(-6);//[m^2/s] +//Properties of oil at To +rho_o=852;//[kg/m^3] +Pr_o=499.3;//Prandtl Number +k_o=0.138;//[W/m.degree Celcius] +nu_o=3.794*10^(-5);//[m^2/s] +//Solution:- +Vw=mw/(rho_w*(%pi*(D_in^2)/4));//[m/s] +disp("m/s",Vw,"The average velocity of water in the tube is") +Re_w=Vw*D_in/nu_w; +disp(Re_w,"The Reynolds number for flow of water in the tube is") +Nu_w=0.023*(Re_w^(0.8))*(Pr_w^(0.4)); +disp(Nu_w,"The nusselt no for turbulent water flow") +hi=k_w*Nu_w/D_in;//[W/m^2.degree Celcius] +//For oil flow +Dh=Di_out-D_in;//Hydraulic Diameter for the annular space[m] +Vo=mo/(rho_o*(%pi*((Di_out^2)-(D_in^2))/4));//[m/s] +disp("m/s",Vo,"The average velocity for flow of oil is") +Re_o=Vo*Dh/nu_o; +disp(Re_o,"The Reynolds number for flow of oil is") +Nu_o=5.45;//Nusselt number for flow of oil usign the table 11.3 and interpolating for value corresponding to Di_out/D_in +ho=Nu_o*k_o/Dh;//[W/m^2.degree Celcius] +U=(1/((1/hi)+(1/ho)));//[W/m^2.degree Celcius] +disp("W/m^2.degree Celcius",U,"The overall heat transfer Coefficient for the given heat exchanger is") diff --git a/587/CH11/EX11.10/example11_10.sce b/587/CH11/EX11.10/example11_10.sce new file mode 100755 index 000000000..a6b471995 --- /dev/null +++ b/587/CH11/EX11.10/example11_10.sce @@ -0,0 +1,22 @@ +clear; +clc; + +//Example11.10[Installing a Heat Exchanger to Save Energy and Money] +//Given:- +Cp=4.18;//[kJ/kg.degree Celcius] +Th_in=80,Tc_in=15;//Inlet temperatures of hot and cold water[degree Celcius] +m=15/60;//[kg/s] +e=0.75;//Effectiveness +t=24*365;//Operating Hours[hours/year] +neta=0.8;//Eficiency +cost=1.10;//[$/therm] +//Solution:- +Q_max=m*Cp*(Th_in-Tc_in);//[kJ/kg.degree Celcius] +disp("kJ/kg.degree Celcius",Q_max,"Maximun Heat recover is") +Q=e*Q_max;//[kJ/s] +E_saved=Q*t*3600;//[kJ/year] +disp("kJ/year",E_saved,"The energy saved during an entire year will be") +F_saved=(E_saved/neta)*(1/105500);//[therms] +disp("therms/year",F_saved,"Fuel savings will be") +M_saved=F_saved*cost;//[$/year] +disp("per year",M_saved,"The amount of money saved is $") \ No newline at end of file diff --git a/587/CH11/EX11.2/Example11_2.sce b/587/CH11/EX11.2/Example11_2.sce new file mode 100755 index 000000000..bdbe9b33f --- /dev/null +++ b/587/CH11/EX11.2/Example11_2.sce @@ -0,0 +1,23 @@ +clear; +clc; + +//Example11.2[Effect of Fouling on the Overall Heat Transfer Coefficient] +//Given:- +k=15.1;//[W/m^2.degree Celcius] +Di=0.015;//Inner Diameter[m] +Do=0.019;//Outer Diameter[m] +Di_s=0.032;//Inner diameter of outer shell[m] +L=1;//[m] +hi=800;//W/m^2.degree Celcius +ho=1200;//[W/m^2.degree Celcius] +Rfi=0.0004;//[m^2.degree Celcius/W] +Rfo=0.0001;//[m^2.degree Celcius/W] +//Solution (a):- +Ai=%pi*Di*L;//[m^2] +Ao=%pi*Do*L;//[m^2] +Ra=(1/(hi*Ai))+(Rfi/Ai)+((log(Do/Di))/(2*%pi*k*L))+(Rfo/Ao)+(1/(ho*Ao));//[m^2.degree Celcius/W] +disp("m^2.degree Celcius/W",Ra,"The thermal Resistance for an unfinned shell and tube heat exchanger with fouling on both heat transfer surfaces is") +//Solution (b):- +Ui=1/(Ra*Ai);//[W/m^2.degree Celcius] +Uo=1/(Ra*Ao);//[W/m^2.degree Celcius] +disp("respectively","W/m^2.degree Celcius",Uo,"and",Ui,"The overall Heat transfer Coefficients based on the inner and outer surfaces of the tube are") \ No newline at end of file diff --git a/587/CH11/EX11.3/example11_3.sce b/587/CH11/EX11.3/example11_3.sce new file mode 100755 index 000000000..e7f9b2e50 --- /dev/null +++ b/587/CH11/EX11.3/example11_3.sce @@ -0,0 +1,22 @@ +clear; +clc; + +//Example11.3[The Condensation of Steam in a Condenser] +//Given:- +Th_in=30,Th_out=30,Tc_in=14,Tc_out=22;//Inlet and Outlet temperatures of hot and cold liquids [degree Celcius] +A=45;//[m^2] +U=2100;//[W/m^2.degree Celcius] +h_fg=2431;//Heat of vapourisation of water at Th_i[kJ/kg] +Cp=4184;//Specific heat of cold water [J/kg] +//Solution:- +del_T1=Th_in-Tc_out;//[degree Celcius] +del_T2=Th_out-Tc_in;//[degree Celcius] +del_T_lm=(del_T1-del_T2)/(log(del_T1/del_T2));//[degree Celcius] +disp("degree Celcius",del_T_lm,"The logrithmic Mean temperature difference is") +Q=U*A*del_T_lm;//[W] +disp("W",Q,"The heat transfer rate in the condenser is") +mw=Q/(Cp*(Tc_out-Tc_in));//[kg/s] +disp("kg/s",mw,"The mass flow rate of the cooling water is") + +ms=(Q/(1000*h_fg));//[kg/s] +disp("kg/s",ms,"The rate of condensation of steam is") \ No newline at end of file diff --git a/587/CH11/EX11.4/example11_4.sce b/587/CH11/EX11.4/example11_4.sce new file mode 100755 index 000000000..2db731115 --- /dev/null +++ b/587/CH11/EX11.4/example11_4.sce @@ -0,0 +1,24 @@ +clear; +clc; + +//Example11.4[Heating Water in a Counter Flow Heat Exchanger] +//Given:- +mw=1.2,mgw=2;//Mass Flow rate of water and geothermal fluid[kg/s] +U=640;//Overall Heat transfer Coefficient[W/m^2.degree Celcius] +Di=0.015;//[m] +Tw_out=80,Tw_in=20;//Outlet and Inlet temp of water[degree Celcius] +Tgw_in=160;//Inlet temp of geothermal fluid[degree Celcius] +Cp_w=4.18,Cp_gw=4.31;//Specific Heats of water and geothermal fluid[kJ/kg.degree Celcius] +//Solution:- +Q=mw*Cp_w*(Tw_out-Tw_in);//[kW] +disp("kW",ceil(Q),"The rate of heat transfer in the heat exchanger is") +Tgw_out=(Tgw_in-(ceil(Q)/(mgw*Cp_gw)));//[degree Celcius] +disp("degree Celcius",Tgw_out,"The outlet temp of geothermal fluid is") +del_T1=Tgw_in-Tw_out;//[degree Celcius] +del_T2=Tgw_out-Tw_in;//[degree Celcius] +del_T_lm=(del_T1-del_T2)/(log(del_T1/del_T2));//[degree Celcius] +disp("degree Celcius",del_T_lm,"The logrithmic Mean temperature difference is") +As=1000*ceil(Q)/(U*del_T_lm);//[m^2] +disp("m^2",As,"The surface area of the heat exchanger is") +L=As/(%pi*Di);//[m] +disp("m",round(L),"The length of the tube is") diff --git a/587/CH11/EX11.5/example11_5.sce b/587/CH11/EX11.5/example11_5.sce new file mode 100755 index 000000000..187dede16 --- /dev/null +++ b/587/CH11/EX11.5/example11_5.sce @@ -0,0 +1,28 @@ +clear; +clc; + +//Example11.5[Heating of Glycerine in a Multipass Heat Exchanger] +//Given:- +//A 2,4 shell and tube heat exchanger +D=0.02;//Diameter[m] +L=60;//Length of tube[m] +Th_in=80,Th_out=40,Tc_in=20,Tc_out=50;//Inlet and Outlet temperatures water and glycerine[degree Celcius] +hi=160,ho=25;//Convective Heat transfer coefficients on both side of tube[W/m^2.degree Celcius] +Rf=0.0006;//Fouling Resistance[m^2.degree Celcius/W] +//Solution:- +As=%pi*D*L;//[m^2] +del_T1=Th_in-Tc_out;//[degree Celcius] +del_T2=Th_out-Tc_in;//[degree Celcius] +del_T_lm=(del_T1-del_T2)/log(del_T1/del_T2);//[degree Celcius] +disp("degree Celcius",del_T_lm,"The log mean temperature difference for the counter flow arrangement is") +F=0.91;//Correction Factor +//(a) +Ua=1/((1/hi)+(1/ho));//[W/m^2.degree Celcius] +disp("W/m^2.degree Celcius",Ua,"In case of no fouling, the over all heat transfer coefficient is") +Qa=Ua*As*F*del_T_lm;//[W] +disp("W",ceil(Qa),"And the rate of heat transfer is") +//(b) +Ub=1/((1/hi)+(1/ho)+(Rf));//[W/m^2.degree Celcius +disp("W/m^2.degree Celcius",Ub,"When there is fouling on one of the surfaces, the overall heat transfer coefficient is") +Qb=Ub*As*F*del_T_lm;//[W] +disp("W",round(Qb),"And the rate of heat transfer is") \ No newline at end of file diff --git a/587/CH11/EX11.6/example11_6.sce b/587/CH11/EX11.6/example11_6.sce new file mode 100755 index 000000000..2169148dc --- /dev/null +++ b/587/CH11/EX11.6/example11_6.sce @@ -0,0 +1,22 @@ +clear; +clc; + +//Example11.6[Cooling of Water in an Automotive Radiator] +//Given:- +m=0.6;//Mass Flow rate of water[kg/s] +Th_in=90,Th_out=65,Tc_in=20,Tc_out=40;//[degree Celcius] +Di=0.005;//[m] +L=0.65;//[m] +n=40;//No of tubes +Cp=4195;//[J/kg.degree Celcius] +//Solution:- +Q=m*Cp*(Th_in-Th_out);//[W] +disp("W",Q,"The rate of heat transfer in the radiator from the hot water to the air is") +Ai=n*%pi*Di*L;//[m^2] +del_T1=Th_in-Tc_out;//[degree Celcius] +del_T2=Th_out-Tc_in;//[degree Celcius] +del_T_lm=(del_T1-del_T2)/log(del_T1/del_T2);//[degree Celcius] +disp("degree Celcius",del_T_lm,"The log mean temperature difference for the counter flow arrangement is") +F=0.97;//Correction Factor for this situation +Ui=Q/(Ai*F*del_T_lm);//[W/m^2.degree Celcius] +disp("W/m^2.degree Celcius",round(Ui),"the overall heat transfer coefficient is") diff --git a/587/CH11/EX11.7/example11_6.sce b/587/CH11/EX11.7/example11_6.sce new file mode 100755 index 000000000..2169148dc --- /dev/null +++ b/587/CH11/EX11.7/example11_6.sce @@ -0,0 +1,22 @@ +clear; +clc; + +//Example11.6[Cooling of Water in an Automotive Radiator] +//Given:- +m=0.6;//Mass Flow rate of water[kg/s] +Th_in=90,Th_out=65,Tc_in=20,Tc_out=40;//[degree Celcius] +Di=0.005;//[m] +L=0.65;//[m] +n=40;//No of tubes +Cp=4195;//[J/kg.degree Celcius] +//Solution:- +Q=m*Cp*(Th_in-Th_out);//[W] +disp("W",Q,"The rate of heat transfer in the radiator from the hot water to the air is") +Ai=n*%pi*Di*L;//[m^2] +del_T1=Th_in-Tc_out;//[degree Celcius] +del_T2=Th_out-Tc_in;//[degree Celcius] +del_T_lm=(del_T1-del_T2)/log(del_T1/del_T2);//[degree Celcius] +disp("degree Celcius",del_T_lm,"The log mean temperature difference for the counter flow arrangement is") +F=0.97;//Correction Factor for this situation +Ui=Q/(Ai*F*del_T_lm);//[W/m^2.degree Celcius] +disp("W/m^2.degree Celcius",round(Ui),"the overall heat transfer coefficient is") diff --git a/587/CH11/EX11.8/example11_8.sce b/587/CH11/EX11.8/example11_8.sce new file mode 100755 index 000000000..ee1b405f8 --- /dev/null +++ b/587/CH11/EX11.8/example11_8.sce @@ -0,0 +1,32 @@ +clear; +clc; + +//Example11.8[Using the Effectiveness- NTU Method] +//Given:- +mc=1.2,mh=2;//Mass Flow rate of water and geothermal fluid[kg/s] +U=640;//Overall Heat transfer Coefficient[W/m^2.degree Celcius] +Di=0.015;//[m] +Tc_out=80,Tc_in=20;//Outlet and Inlet temp of water[degree Celcius] +Th_in=160;//Inlet temp of geothermal fluid[degree Celcius] +Cp_c=4.18,Cp_h=4.31;//Specific Heats of water and geothermal fluid[kJ/kg.degree Celcius] +//Solution:- +Ch=mh*Cp_h;//[kW/degree Celcius] +Cc=mc*Cp_c;//[kW/degree Celcius] +if(Ch>Cc) then, + Cmin=Cc; + c=Cmin/Ch; +else + Cmin=Ch; + c=Cmin/Cc; +end +Q_max=Cmin*(Th_in-Tc_in);//[kW] +disp("kW",Q_max,"The maximum heat transfer rate is") +Q_ac=mc*Cp_c*(Tc_out-Tc_in);//[kW] +e=Q_ac/Q_max; +disp(e,"The effectiveness of the heat exchanger is") +NTU=(1/(c-1))*log((e-1)/(e*c-1)); +disp(NTU,"The NTU of this counter flow heat exchanger is") +As=NTU*Cmin*1000/U;//[m^2] +disp("m^2",As,"The heat transfer surface area is") +L=As/(%pi*Di);//[m] +disp("m",round(L),"The length of the tube is") \ No newline at end of file diff --git a/587/CH11/EX11.9/example11_9.sce b/587/CH11/EX11.9/example11_9.sce new file mode 100755 index 000000000..7d83ea1e5 --- /dev/null +++ b/587/CH11/EX11.9/example11_9.sce @@ -0,0 +1,34 @@ +clear; +clc; + +//Example11.9[Cooling Hot Oil by Water in Multipass Heat Exchanger] +//Given:- +Cp_c=4.18,Cp_h=2.13;//Specific Heats of water and oil[kJ/kg] +mc=0.2,mh=0.3;//Mass Flow rate of oil and water [kg/s] +Th_in=150,Tc_in=20;//[degree Celcius] +n=8;//No of tubes +D=0.014;//[m] +L=5;//[m] +U=310;//Overall Heat transfer Coefficient[W/m^2.degree Celcius] +//Solution:- +Ch=mh*Cp_h;//[kW/degree Celcius] +Cc=mc*Cp_c;//[kW/degree Celcius] +if(Ch>Cc) then, + Cmin=Cc; + c=Cmin/Ch; +else + Cmin=Ch; + c=Cmin/Cc; +end +Q_max=Cmin*(Th_in-Tc_in);//[kW] +disp("kW",Q_max,"The maximum heat transfer rate is") +As=n*%pi*D*L;//[m^2] +disp("m^2",As,"Heat transfer Surface Area is") +NTU=U*As/Cmin; +disp(NTU,"The NTU of this heat exchanger is") +e=0.47;//Determined from fig 11.26(c)using value of NTU and c +Q=e*Q_max;//[kW] +Tc_out=Tc_in+(Q/Cc);//[degree Celcius] +Th_out=Th_in-(Q/Ch);//[degree Celcius] +disp("degree Celcius",Tc_out,"to","degree Celcius",Tc_in,"The temperature of cooling water will rise from") +disp("degree Celcius",Th_out,"to","degree Celcius",Th_in,"as it cools the hot oil from") \ No newline at end of file diff --git a/587/CH12/EX12.1/example12_1.sce b/587/CH12/EX12.1/example12_1.sce new file mode 100755 index 000000000..d13342ebf --- /dev/null +++ b/587/CH12/EX12.1/example12_1.sce @@ -0,0 +1,22 @@ +clear; +clc; + +//Example12.1[Radiation Emission from a Black Ball] +//Given:- +T=800;//Temperature of suspended ball[K] +D=0.2;//Diameter[m] +C1=3.74177*10^8;//[(micrometer^4)/m^2] +C2=1.43878*10^4;//[micrometer.K] +lambda=3;//[micrometer] +//Solution (a):- +Eb=(5.67*10^(-8))*(T^4);//[W/m^2] +disp("of energy in the form of energy in the form of electromagnetic radiation per second per m^2","kJ",Eb/1000,"The ball emits") +//Solution(b):- +As=%pi*(D^2);//[m^2] +disp("m^2",As,"The total Surface area of the ball is") +del_t=5*60;//[seconds] +Q_rad=Eb*As*del_t;//[J] +disp("kJ",Q_rad/1000,"The total amount of radiation energy emitted from the entire ball is") +//Solution (c) +Eb_lambda=C1/((lambda^5)*((exp(C2/(lambda*T)))-1));//[W/m^2.micrometer] +disp("W/m^2.micrometer",round(Eb_lambda),"The spectral blackbody emissive power") diff --git a/587/CH12/EX12.2/example12_2.sce b/587/CH12/EX12.2/example12_2.sce new file mode 100755 index 000000000..408351a9c --- /dev/null +++ b/587/CH12/EX12.2/example12_2.sce @@ -0,0 +1,13 @@ +clear; +clc; + +//Example12.2[Emission of Radiation from a Lightbulb] +//Given:- +T=2500;//Temp of the filament[K] +lambda1=0.4,lambda2=0.76;//Visible ranfe[micrometer] +f1=0.000321,f2=0.053035;//The black body radiation functions corresponding to lamda1*T and lambda2*T +//Solution:- +f3=f2-f1; +disp(f3,"Fraction of radiation emitted between the two given wavelengths is") +lambda_max=2897.8/T;//[micrometer] +disp("micron",lambda_max,"The wavelength at which the emission of radiation from the filament peaks is") \ No newline at end of file diff --git a/587/CH12/EX12.3/example12_3.sce b/587/CH12/EX12.3/example12_3.sce new file mode 100755 index 000000000..d0d06386a --- /dev/null +++ b/587/CH12/EX12.3/example12_3.sce @@ -0,0 +1,17 @@ +clear; +clc; + +//Example12.3[Radiation Incident on a small surface] +//Given:- +A1=3^10^(-4);//[m^2] +T1=600;//[k] +A2=5*10^(-4);//[m^2] +theta1=%pi*55/180,theta2=%pi*40/180;//[Radian] +r=0.75;//[m] +//Solution:- +w_2_1=(A2*cos(theta2))/(r^2);//[Steradian] +disp("sr",w_2_1,"The solid angle subtended by a2 when viewed from A1 is") +I1=(5.67*10^(-8))*(T1^4)/(%pi);//[W/m^2.sr] +disp("W/m^2.sr",I1,"The Intensity of radiation emitted by A1 is") +Q1_2=I1*(A1*cos(theta1))*w_2_1;//[W] +disp("W",Q1_2,"is ","Steradian",w_2_1,"through the solid angle","radians",theta1,"The rate of radiation energy emitted by A1 in the direction of") \ No newline at end of file diff --git a/587/CH12/EX12.4/example12_4.sce b/587/CH12/EX12.4/example12_4.sce new file mode 100755 index 000000000..3d04f55e4 --- /dev/null +++ b/587/CH12/EX12.4/example12_4.sce @@ -0,0 +1,21 @@ +clear; +clc; + +//Example12.4[Emissivity of a surface and emissive Power] +e1=0.3;//For 0<= lambda <= 3micron +e2=0.8;//3micron<=lambda<=7micron +e3=0.1;//7micron<=lamda(1.5*D))then + S=(2*%pi*L)/(log((4*z)/D)), end;//[m] + disp(S,"Shape factor is") + Q_=S*k_soil*(T_psurf-T_esurf);//[W] + disp("W",Q_,"The steady rate of heat transfer from the pipe is") \ No newline at end of file diff --git a/587/CH3/EX3.14/example3_14.sce b/587/CH3/EX3.14/example3_14.sce new file mode 100755 index 000000000..9fe3be6a1 --- /dev/null +++ b/587/CH3/EX3.14/example3_14.sce @@ -0,0 +1,17 @@ +clear; +clc; + +//Example3.14[Heat Transfer between Hot and Cold Water pipes] +//Given:- +T_hot=70;//Surface Temperature of hot pipe[degree Celcius] +T_cold=15;//Surface Temperature of cold pipe[degree Celcius] +L=5;//Length of both pipes[m] +D=0.05;//Diameter of both the pipes[m] +z=0.3;//Distance between centreline of both the pipes[m] +k=0.75;//Thermal Conductivity of the concerte[W/m.degree Celcius] +//Solution:- +//Calculating Shape Factor +S=(2*%pi*L)/(acosh(((4*(z^2))-(D^2)-(D^2))/(2*D*D)));//[m] +disp("m",S,"Shave factor for given configuration is") +Q_=S*k*(T_hot-T_cold);//[W] +disp("W",Q_,"The steady rate of heat transfer between the pipes becomes") diff --git a/587/CH3/EX3.15/example3_15.sce b/587/CH3/EX3.15/example3_15.sce new file mode 100755 index 000000000..ca05c8108 --- /dev/null +++ b/587/CH3/EX3.15/example3_15.sce @@ -0,0 +1,32 @@ +clear; +clc; + +//Example3.15[Cost of Heat Loss through walls in winter] +//Given:- +R_va_insu=2.3;//thickness to thermal conductivity ratio[m^2.degreeCelcius/W] +L1=12;//length of first wall of house[m] +L2=12;//length of second wall of house[m] +L3=9;//length of third wall of house[m] +L4=9;//length of fourth wall of house[m] +H=3;//height of all the walls[m] +T_in=25;//Temperature inside house[degree Celcius] +T_out=7;;//average temperature of outdoors on a certain day[degree Celcius] +ucost=0.075;//Unit Cost of elctricity[$/kWh] +h_in=8.29,h_out=34.0;//Heat transfer coefficients for inner and outer surface of the walls respectively[W/m^2.degree Celcius] +v=24*(3600/1000);//velocity of wind[m/s] +//Solution:- +//Heat transfer Area of walls=(Perimeter*Height) +A=(L1+L2+L3+L4)*H;//[m^2] +//Individual Resistances +R_conv_in=1/(h_in*A);//Convection Resistance on inner surface of wall[degree Celcius/W] +R_conv_out=1/(h_out*A);//Convection Resistance on outer surface of wall[degree Celcius/W] +R_wall=R_va_insu/A;//Conduction resistance to wall[degree Celcius/W] +//All resistances are in series +R_total=R_conv_in+R_wall+R_conv_out;//[degree Celcius/W] +Q_=(T_in-T_out)/R_total;//[W] +disp("W",Q_,"The steady rate of heat transfer through the walls of the house is") +delta_t=24;//Time period[h] +Q=(Q_/1000)*delta_t;//[kWh/day] +disp("kWh/day",Q,"The total amount of heat lost through the walss during a 24 hour period ") +cost=Q*ucost;//[$/day] +disp("per day",cost,"Cost of heat consumption is $") diff --git a/587/CH3/EX3.16/example3_16.sce b/587/CH3/EX3.16/example3_16.sce new file mode 100755 index 000000000..728a8eae6 --- /dev/null +++ b/587/CH3/EX3.16/example3_16.sce @@ -0,0 +1,24 @@ +clear; +clc; + +//Example3.16[The R-value of a Wood Frame Wall] +//Given:- +f_area_insu=0.75;//area fraction for the insulation section +f_area_stud=0.25;//area fraction for the stud +R_bstud=3.05;//Total unit thermal resistance of section between studs[m^.degree Celcius/W] +R_atstud=1.23;//Total unit thermal resistance of section at studs[m^.degree Celcius/W] +P=50;//Perimeter of the building[m] +H=2.5;//height of the walls[m] +T_in=22;//Temperature inside the walls[degree Celcius] +T_out=-2;//Temperature outside the walls[degree Celcius] +//Solution:- +U_bstud=1/R_bstud;//[W/m^2.degree Celcius] +U_atstud=1/R_atstud;//[W/m^2.degree Celcius] +Total_U=(f_area_insu*U_bstud)+(f_area_stud*R_atstud);//[W/m^2.degree Celcius] +disp("W/m^",Total_U,"Overall U factor is") +disp("degree Celcius.m^2/W",(1/Total_U),"Overall unit thermal Resistance is") +///Since glazing constitutes 20% of the walls, +A_wall=(0.80)*P*H;//[m^2] +Q_=Total_U*A_wall*(T_in-T_out);//[W] +disp("W",Q_,"The rate of heat loss through the walls under design conditions is") +//Answer is slighthly different from book because of no of digits after decimal pont used here is quite large \ No newline at end of file diff --git a/587/CH3/EX3.17/example3_17.sce b/587/CH3/EX3.17/example3_17.sce new file mode 100755 index 000000000..80dd7d4f5 --- /dev/null +++ b/587/CH3/EX3.17/example3_17.sce @@ -0,0 +1,16 @@ +clear; +clc; + +//Example13.17[The R value of a Wall with Rigid Foam] +//Given:- +//using values from previous example +R_old=2.23;//AS written in book[m^2.degree Celcius/W] +//R value of of the fibreboard and the foam insulation, respectively +R_removed=0.23;//[m^2.degree Celcius/W] +R_added=0.98;//[m^2.degree Celcius/W] +//Solution:- +R_new=R_old-R_removed+R_added;//[m^2.degree Celcius/W] +increase=((R_new-R_old)/R_old)*100; +disp("m^2.degree Celcius/W",R_old,"Old R value is") +disp("m^2.degree Celcius/W",R_new,"New R value is") +disp(increase,"Percent increase in R-value") \ No newline at end of file diff --git a/587/CH3/EX3.2/example3_2.sce b/587/CH3/EX3.2/example3_2.sce new file mode 100755 index 000000000..32bf6e3f2 --- /dev/null +++ b/587/CH3/EX3.2/example3_2.sce @@ -0,0 +1,28 @@ +clear; +clc; + +//Example 3.2[Heat Loss through a Single Pane Window] +//Assumptions :- +//1)Heat transfer through the window is steady +//2)Heat transfer through the wall is one dimensional +k=0.78;//[W/m.K] +disp("W/m.K",k,"The thermal conductivity is given to be") +L=0.008;//Thickness of glass window[m] +A=(0.8*1.5);//Area of the window[m^2] +T_1=20;//Temeprature of inner surface of glass window[dgree Celcius] +T_2=-10;//Temeprature of outer surface of glass window[dgree Celcius] +h_in=10;//Heat transfer coefficient on the inner surface of the window[W/m^2] +h_out=40;//Heat transfer coefficient on the outer surface of the window[W/m^2] +//Convection Resistance +R_conv1=1/(h_in*A);//[degree Celcius/W] +R_conv2=1/(h_out*A);//[degree Celcius/W] +//Conduction Resistance +R_cond=L/(k*A);//[degree Celcius/W] +//Net Resistance are in series +R_total=R_conv1+R_conv2+R_cond;//[degree Celcius/W] +disp("degree Celcius/W",R_total,"The total Resistance offered by glass window") +Q_=(T_1-T_2)/R_total;//[W] +disp("W",Q_,"Steady rate of Heat Transfer through the window is") +//Knowing the rate of Heat Transfer +T1=T_1-(Q_*R_conv1);//[degree Celciusthe inner surface temperature of the window glass can be determined from] +disp("degree Celcius",T1,"Inner Surface Temperature of the window glass") diff --git a/587/CH3/EX3.3/example3_3.sce b/587/CH3/EX3.3/example3_3.sce new file mode 100755 index 000000000..fffe46cb8 --- /dev/null +++ b/587/CH3/EX3.3/example3_3.sce @@ -0,0 +1,30 @@ +clear; +clc; + +//Example3.3[:Heat Loss through double pane windows] +//Given:- +k_g=0.78;//Thermal conductitvity of glass [W/m.K] +k_a=0.026;//Thermal conductivity of air space[W/m.K] +L_g=.004;//Thickness of glass layer[m] +L_a=0.01;//Thickness of air space[m] +h_in=10;//ConvectionHeat transfer coefficient on the inner surface of the window[W/m^2] +h_out=40;//ConvectionHeat transfer coefficient on the outer surface of the window[W/m^2] +T_1=20;//Outer wall Temperature [degree Celcius] +T_2=-10;//Inner wall Temperature [degree Celcius] +//Solution:- +A=(0.8*1.5);//Area of glass window[m^2] +//Convection Resistances +R_conv1=1/(h_in*A);//Due to convection heat transfer between inner atmosphere and glass[degree Celcius/W] +R_conv2=1/(h_out*A);//Due to convection heat transfer between outer atmosphere and glass[degree Celcius/W] +//Conduction Resistances +R_cond1=L_g/(k_g*A);//Due to conduction heat transfer through the glass[degree Celcius/W] +R_cond2=R_cond1;//Glass Medium is seperated by air spac hence two glass mediums are created[degree Celcius/W] +R_cond3=L_a/(k_a*A);//Due to conduction heat transfer through the air space[degree Celcius/W] +//Net Resistance offered by window is the sum of all the individual resistances written in the oreder of their occurence +R_total=R_conv1+R_cond1+R_cond2+R_cond3+R_conv2;//[degree Celcius/W] +disp("degree Celcius/W",R_total,"The net resistance offered is") +Q_=(T_1-T_2)/R_total;//[W] +disp("W",Q_,"The steady rate of Heat transfer through the window is") +//Inner surface temperature of the window is given by +T1=T_1-(Q_*R_conv1);//[degree Celcius] +disp("degree Celcius",T1,"Inner Surface Temperature of the window is") \ No newline at end of file diff --git a/587/CH3/EX3.4/example3_4.sce b/587/CH3/EX3.4/example3_4.sce new file mode 100755 index 000000000..defd9782d --- /dev/null +++ b/587/CH3/EX3.4/example3_4.sce @@ -0,0 +1,17 @@ +clear; +clc; + +//Example3.4[Equivalent Thickness for Contact Resistance] +//Given:- +k=237;//Thermal conductivity of aluminium[W/m.K] +L=0.01;//Thickness of aluminium plate[m] +hc=11000;//Thermal contact conductance[W/m^2.K] +//Solution:- +Rc=1/hc;//[m^2.K/W] +disp("Since thermal contact resistance is the inverse of thermal contact conductance") +disp("m^2.K/W",Rc,"Hence Therml contact Resistance is") +//For a unit surface area, the thermal resistance of a flat plate is defined as +R=L/k; +//Equivalent thickness for R=Rc +L=k*Rc;//[m] +disp("cm",(100*L),"Equivalent thickness is") \ No newline at end of file diff --git a/587/CH3/EX3.5/example3_5.sce b/587/CH3/EX3.5/example3_5.sce new file mode 100755 index 000000000..4503d02ba --- /dev/null +++ b/587/CH3/EX3.5/example3_5.sce @@ -0,0 +1,24 @@ +clear; +clc; + +//Example3.5[Contact Reistance of Transistors] +//Given:- +k=386;//Thermal Conductivity of Copper[W/m.K] +hc=42000;//Contact Conductance coreesponding to copper-aluminium interface for the case of 1.17-1.4 micron roughness and 5MPa[pressure, which is close to given to what we have[W/m^2.K] +Ac=.0008;//Contact area b/w the case and the plate[m^2] +A=0.01;//Plate area for each resistor[m^2] +L=0.01;//Thickness of plate[m] +ho=25;//Heat tranfer coefficient for back surface +T_1=20;//Ambient Temperature[degree Celcius] +T_2=70;//Maximum temperature of case[degree Celcius] +//Solution:- +//Resistances Offered +R_interface=1/(hc*Ac);//Resistance offered at the copper aluminium interface[degree Cecius/W] +R_plate=L/(k*A);//conduction resistance offered by coppr plate[degree Cecius/W] +R_conv=1/(ho*A);//Convection resistance offerd by back surface of casing[degree Cecius/W] +R_total=R_interface+R_plate+R_conv;//[degree Cecius/W] +disp("degree Cecius/W",R_total,"The total thermal Tesistance is") +Q_=(T_2-T_1)/R_total;//[W] +disp("W",Q_,"The rate of heat transferred is") +delta_T=Q_*R_interface;//[degree Celcius] +disp("degree Celcius",delta_T,"The temperature jump at the interface is given by") \ No newline at end of file diff --git a/587/CH3/EX3.6/example3_6.sce b/587/CH3/EX3.6/example3_6.sce new file mode 100755 index 000000000..268855b73 --- /dev/null +++ b/587/CH3/EX3.6/example3_6.sce @@ -0,0 +1,42 @@ +clear; +clc; + +//Example3.6[Heat Loss through a Composite Wall] +//Given:- +//We consider a 1m deep and 0.25 m high portion of the wall since it is representative of the entire wall +//Assuming any cross-section of the wall normal to the x-direction to be isothermal +k_b=0.72;//thermal conductivity of bricks[W/m.K] +k_p=0.22;//thermal conductivity of plaster layers[W/m.K] +k_f=0.026;//thermal conductivity of foam layers[W/m.K] +T_in=20;//Indoor Temperature[dgeree Celcius] +T_out=-10;//Outdoor Temperature[dgeree Celcius] +h_in=10;//Inner heat transfer coefficient[W/m^2.K] +h_out=25;//Outer heat transfer coefficient[W/m^2.K] +L_f=0.03;//Thickness of foam layer[m] +L_p=0.02;//Thickness of plaster[m] +L_b=0.16;//Thickness of brick wall[m] +L_c=0.16;//Thickness of central plaster layer[m] +A1=(0.25*1);//[m^2] +A2=(0.015*1);//[m^2] +A3=(0.22*1);//[m^2] +//Resistances offered:- +R_in=1/(h_in*A1);//Resistance to conevction heat transfer from inner surface[degree Celcius/W] +R1=L_f/(k_f*A1);//Conduction Resistance offered by outer foam layer[degree Celcius/W] +R2=L_p/(k_p*A1);//Conduction Resistance offered by Outer side Plaster Wall[degree Celcius/W] +R6=R2;//Conduction Resistance offered by Inner side Plaster Wall[degree Celcius/W] +R3=L_c/(k_p*A2);//Conduction Resistance offered by one side central Plaster wall[degree Celcius/W] +R5=R3;//Conduction Resistance offered by other side central Plaster wall[degree Celcius/W] +R4=L_b/(k_b*A3);//Conduction Resistance offered by Brick Wall[degree Celcius/W] +R_out=1/(h_out*A1);//Convection Resistance from outer surface[degree Celcius/W] +//R_in,R1,R2,R6,R_out are connected in series +//R3,R4,R5 are connected in parallel +R_mid=1/((1/R3)+(1/R4)+(1/R5));//Effective Parrallel Resistance +R_total=(R_in+R1+R2+R_mid+R6+R_out);//[degree Celcius/W] +disp("degree Celcius/W",R_total,"Net Resistance offered is") +Q_=(T_in-T_out)/R_total;//[W] +disp("W",Q_,"The steady rate of heat transfer through the wall is") +Q_p=Q_/A1;//[W/m^2] +disp("W/m^2",Q_p,"Heat Transfer per unit area is") +A_total=3*5;//Total Area of wall[m^2] +Q_total=Q_p*A_total;//[W] +disp("W",Q_total,"Thr rate of heat transfer through the entire wall") diff --git a/587/CH3/EX3.7/example3_7.sce b/587/CH3/EX3.7/example3_7.sce new file mode 100755 index 000000000..373298fd7 --- /dev/null +++ b/587/CH3/EX3.7/example3_7.sce @@ -0,0 +1,50 @@ +clear; +clc; + +//Example3.7[Heat Transfer to a Spherical Container] +//Radiation effect is being considered. For the black tank emissivity=1 +//Given:- +k=15;//thermal conductivity of stainless steel[W/m.degree Celcius] +T_ice=0+273;//temeperature of iced water[K] +T_tank=22+273;//temperature of tank stored at room temperature[K] +h_in=80;//Heat Transfer Coefficient at the inner surface of the tank[W/m^2.degree Celcius] +h_out=10;//Heat Transfer Coefficient at the outer surface of the tank[W/m^2.degree Celcius] +heat_f=333.7;//Heat of fusion of water at atmospheric pressure[kJ/kg] +e=1;//emissivity of tank +sigma=5.67*(10^(-8));//Stefan's [W/m^2.K^4] +D1=3;//inner diameter[m] +D2=3.04;//Outer diameter[m] +//Solution:- +//a) +A1=(%pi)*(D1^2);//Inner Surface area of the tank[m^2] +A2=(%pi)*(D2^2);//outer Surface area of the tank[m^2] +disp("The radiation heat transfer coefficient is given by ") +disp("h_rad=e*sigma*((T2^2)+(T_tank^2))*(T2+T_tank)") +disp("But we dont know the outer surface temperature T2 of the tank. hence we assume a T2 value") +disp("since heat transfer inside the tank is larger ") +T2=5+273;//[K] +disp("K",T2,"Therefore taking T2 =") +h_rad=e*sigma*((T2^2)+(T_tank^2))*(T2+T_tank);//[W/m^2.K] +disp("W/m^2.degree Celcius",h_rad,"The radiation heat transfer coefficient is determined to be") +//Individual Thermal Resistances Offered +R_in=1/(h_in*A1);//Resistance to convetion from inner side of tank[degree Celcius/W] +R_sphere=((D2-D1)/2)/(4*%pi*k*(D1/2)*(D2/2));//Resistance to conduction due to ice sphere[degree Celcius/W] +R_out=1/(h_out*A2);//Resistance to convection from outer side of tank[degree Celcius/W] +R_rad=1/(h_rad*A2);//Resistance to radiation heat transfer[degree Celcius/W] +//R_out and R_rad are in parallel connection, +R_eq=(1/((1/R_out)+(1/R_rad)));//[degree Celcius/W] +//R_in,R_sphere and R_eq are connected in series +R_total=R_in+R_sphere+R_eq;//[degree Celcius/W] +Q_=(T_tank-T_ice)/R_total;//[W] +disp("W",Q_,"The steady rate of heat transfer to the iced water is") +disp("We determine outer surface temperature to check the validity of assumption") +T2=T_tank-(Q_*R_eq);//[K] +disp("K",T2) +disp("which is sufficiently close to 278 K") +//b) +delta_t=24;//Time duration[h] +Q=Q_*delta_t*(3600/1000);//[kJ] +disp("kJ",Q,"The total amount of heat transfer during a 24 hour period is") +//It takes 333.7 kJ of energy to melt 1kg of ice at 0 degree Celcius +m_ice=Q/heat_f;//[kg] +disp("kg",m_ice,"The amount of ice that will melt during 24h period is") diff --git a/587/CH3/EX3.8/example3_8.sce b/587/CH3/EX3.8/example3_8.sce new file mode 100755 index 000000000..f272c3242 --- /dev/null +++ b/587/CH3/EX3.8/example3_8.sce @@ -0,0 +1,32 @@ +clear; +clc; + +//Example3.8[Heat Loss through an Insulated Steam Pipe] +//Given:- +T_steam=320;//[degree Celcius] +T_surr=5;//[degree Celcius] +k_iron=80;//Thermal conductivity of cast iron[W/m.degree Celcius] +k_insu=0.05;//Thermal conductivity of glass wool insulation[W/m.degree Celcius] +h_out=18;//Covection heat transfer coefficient outside the pipe[w/m^2.degree Celcius] +h_in=60;//Covection heat transfer coefficient insideside the pipe[w/m^2.degree Celcius] +D_in=0.05;//Inner diameter of pipe[m] +D_out=0.055;//Outer diameter of pipe[m] +t=0.03;//Thickness of insulation[m] +r=(D_out/2)+t;//Effective outer radius[m] +L=1;//Length of pipe[m] +//Solution:- +//Areas of surfaces exposed to convection +A1=2*%pi*(D_in/2)*L;//Inner Area of pipe[m^2] +A2=2*%pi*(r)*L;//Outer Area of pipe[m^2 +//Individual Thermal Resistances +R_conv_in=1/(h_in*A1);//Resistance to convetion from inner surface of pipe[degree Celcius/W] +R_pipe=(log(D_out/D_in))/(2*%pi*k_iron*L);//Resitance to conduction through iron pipe[degree Celcius/W] +R_insu=(log(r/(D_out/2)))/(2*%pi*k_insu*L);//Resistance to conduction through insulation[degree Celcius/W] +R_conv_out=1/(h_out*A2);//Resistance to convetion from outer surface of insulation on pipe[degree Celcius/W] +//All resistances are in series +R_total=R_conv_in+R_pipe+R_insu+R_conv_out;//Total Resistance[degree Celcius] +Q_=(T_steam-T_surr)/R_total;//[W] +disp("W",Q_,"The Steady rate of heat loss from the steam per m length of pipe is") +delta_T_pipe=Q_*R_pipe;//[degree Celcius] +delta_T_insu=Q_*R_insu;//[degree Celcius] +disp("degree Celcius",delta_T_insu,"and",delta_T_pipe,,"The temperature drop across the pipe and the insulation is respectively") \ No newline at end of file diff --git a/587/CH3/EX3.9/example3_9.sce b/587/CH3/EX3.9/example3_9.sce new file mode 100755 index 000000000..65dec257a --- /dev/null +++ b/587/CH3/EX3.9/example3_9.sce @@ -0,0 +1,31 @@ +clear; +clc; + +//Example3.9[Heat Loss from an Insulated Electric Wire] +//Given:- +k_insu=0.15;//[W/m.degree Celcius] +V=8;//Voltage drop across wire[Volts] +I=10;//Current flowimg through the wire[Amperes] +T_atm=30;//Temperature of atmosphere to which wire is exposed[degree Celcius] +h=12;//heat transfer coefficient[W/m^2.degree Celcius] +L=5;//length of wire[m] +D=0.003;//diameter of wire[m] +t=0.002;//thickness of insulation[m] +r=(D/2)+t;//Effective radius[m] +//Solution:- +//Rate of heat generated in the wire becomes equal to the rate of heat transfer +Q_=V*I;//[W] +disp("W",Q_,"Heat generated in the wire is") +A2=2*%pi*r*L;//Outer surface area[m^2] +//Resistances offered +R_conv=1/(h*A2);//Convection resistance for the outer sueface of insulation[degree Celcius/W] +R_insu=(log(r/(D/2)))/(2*%pi*k_insu*L);//Conduction resitance for the plastic insulation[degree Celcius/W] +//Effective Resistance +R_total=R_conv+R_insu;//[degree Celcius/W] +//Interface Temperature can be determined from +T1=T_atm+(Q_*R_total);//[degree Celcius] +disp("degree Celcius",T1,"The interface temperature is") +//Critical radius +r_cr=k_insu/h;//[m] +disp("mm",r_cr*1000,"The critical radius of insulation of the plastic cover is") +//Larger value of critical radius ensures that increasing the thickness of insulation upto critical radius will increase the rate of heat transfer \ No newline at end of file diff --git a/587/CH4/EX4.1/example4_1.sce b/587/CH4/EX4.1/example4_1.sce new file mode 100755 index 000000000..ddfcdfcbc --- /dev/null +++ b/587/CH4/EX4.1/example4_1.sce @@ -0,0 +1,25 @@ +clear; +clc; + +//Example4.1[Temperature Measurement by Thermocouples] +//Given:- +//Temperature of a gas stream is to be measured by a thermocouple whose junction can be approximated as a sphere +D=0.001;//Diameter of junction sphere[m] +//Properties of the junction +k=35;//Thermal conductivity[W/m.degree Celcius] +rho=8500;//desity[kg/m^3] +Cp=320;//Specific heat[J/kg.degree Celcius] +h=210;//Convection heat transfer coefficient between junction and the gas[W/m^2.degree Celcius] +//Solution:- +//V=(%pi/6)*(D^3) +Lc=(((%pi/6)*(D^3))/(%pi*(D^2)));//The characteristic length of the junction[m] +Bi=h*Lc/k;//Biot Number +if(Bi<0.1) then, +disp(Bi,"Since Bi=") +disp("is less than 0.1 hence lumped system is applicable and the error involved in this approximation is negligible") +end; +b=h/(rho*Cp*Lc);//Exponent time constant[s^(-1)] +disp("s^(-1)",b,"Time constant for given lumped heat capacity system") +//In order to read 99% of intial temperature difference between the junction and the gas we must have ((T(t)-T_end)/(Ti-T_end))=0.01 +t=-1*(log(0.01))/b; +disp("seconds",round(t),"Required time is") \ No newline at end of file diff --git a/587/CH4/EX4.10/example4_10.sce b/587/CH4/EX4.10/example4_10.sce new file mode 100755 index 000000000..1313996ed --- /dev/null +++ b/587/CH4/EX4.10/example4_10.sce @@ -0,0 +1,28 @@ +clear; +clc; + +//Example4.10[Cooling of a Long Cylinder by Water] +Ti=200;//Initial Temperature of aluminium cylinder[degree Celcius] +Tf=15;//Temperature of water in which cylinder is kept[degree Celcius] +h=120;//Heat transfer Coefficent[W/m^2.degree Celcius] +t=5*60;//[seconds] +//Properties of aluminium at room temperature +k=237;//Thermal conductivity[W/m.degree Celcius] +a=9.71*(10^(-5));//Thermal diffusivity[m^/s] +r=0.1;//Radius of cylinder[m] +x=0.15;//[m] +//Solution:- +Bi=(h*r)/k;//Biot number +//Corresponding to this biot no coefficients for a cylinder +lambda=0.3126,A=1.0124; +tau=(a*t)/(r^2); +//Using one term approximation +theta0=A*exp(-(lambda^2)*tau); +neta=x/(2*sqrt(a*t)); +u=(h*sqrt(a*t))/k; +v=(h*x)/k; +w=(u^2); +theta_semiinfinite=1-erfc(neta)+(exp(v+w)*erfc(neta+u)); +theta=theta_semiinfinite*theta0; +T_x_t=Tf+(theta*(Ti-Tf));//[degree Celcius] +disp("degree Celcius",ceil (T_x_t),"the temperature at the center of the cylinder 15cm from the exposed bottom surface") \ No newline at end of file diff --git a/587/CH4/EX4.11/example4_11.sce b/587/CH4/EX4.11/example4_11.sce new file mode 100755 index 000000000..6719706ee --- /dev/null +++ b/587/CH4/EX4.11/example4_11.sce @@ -0,0 +1,23 @@ +clear; +clc; + +//Example4.11[Refrigerating Steaks while Avoiding Frostbite] +//Given:- +Ti=25;//Initial temperature of steaks[degree Celcius] +Tf=-15;//Temperature of refrigerator[degree Celcius] +L=0.015;//Thickness of steaks[m] +//Properties of steaks +k=0.45;//[W/m.degree Celcius] +rho=1200;//density[kg/m^3] +a=9.03*(10^(-8));//Thermal diffusivity[m^2/s] +Cp=4.10;//Specific Heat [kJ/kg] +T_L=2,T_0=8;//[degree Celcius] +//Solution:- +//In the limiting case the surface temperature at x=L from the centre will be 2 degree C,while midplane temperature is 8 degree C in an environment at -15 degree C we have +x=L; +p=(T_L-Tf)/(T_0-Tf); +//For this value of p we have +Bi=1/1.5;//Biot number +h=(Bi*k)/L;//[W/m^2.degree Celcius] +disp("W/m^2.degree Celcius",h,"The convection heat transfer coefficient should be kept below the value") +disp("to satisfy the constraints on the temperature of the steak during refrigeration") \ No newline at end of file diff --git a/587/CH4/EX4.2/example4_2.sce b/587/CH4/EX4.2/example4_2.sce new file mode 100755 index 000000000..52408fbd1 --- /dev/null +++ b/587/CH4/EX4.2/example4_2.sce @@ -0,0 +1,26 @@ +clear; +clc; + +//Example4.2[Predicting the time of Death] +//Given:- +T_room=20;//Temperature of room[degree Celcius] +T_body_f=25;//Temperature of dead body after some time[degree Celcius] +T_body_i=37;//Temperature of dead body just after death[degree Celcius] +h=8;//Heat transfer Coefficient[W/m^2.degree Celcius] +L=1.7;//Length of body which is assumed to be cylindrical in shape[m] +r=0.15;//Radius of cylindrical body +//Average human body is 72% water by mass, thus we assumne body to have properties of water +rho=996;//Density[kg/m^3] +k=0.617;//Thermal conductivity[W/m.degree Celcius] +Cp=4178;//Specific Heat[J/kg.degree Celcius] +//Solution:- +Lc=(%pi*(r^2)*L)/((2*%pi*r*L)+(2*%pi*(r^2)));//Characteristic length of body[m] +Bi=(h*Lc)/k;//Biot no +if(Bi>0.1) then, + disp("lumped system analysis is not applicable, but we can still use it to get a rough estimate of time of death") + b=h/(rho*Cp*Lc);//[s^(-1)] + x=(T_body_i-T_room)/(T_body_f-T_room); +//exp(-b*t)=x; +t=(1/b)*log(x);//time elapsed[seconds] +disp("hour",t/3600,"As a rough estimate the person dies about") +disp("before the body was found") diff --git a/587/CH4/EX4.3/example4_3.sce b/587/CH4/EX4.3/example4_3.sce new file mode 100755 index 000000000..8de8e73d6 --- /dev/null +++ b/587/CH4/EX4.3/example4_3.sce @@ -0,0 +1,27 @@ +clear; +clc; + +//Example4.3[Boiling Eggs] +//Given:- +T1=5;//Initial temperature of egg[degree Celcius] +T2=95;//Temperature of Boiling Water[degree Celcius] +h=1200;//Convection heat transfer coefficient of egg[W/m^2.degree Celcius] +r=0.025;//Radius of egg[m] +T3=70;//Final temperature attained by centre of egg[degree Celcius] +k=0.627;//Thermal conductivity[W/m.degree Celcius] +a=0.151*(10^(-6));//Thermal diffusivity[m^2/s] +//Solution:- +Bi=(h*r)/k;//Biot Number +if(Bi>0.1) then, +disp("the lumped system analysis is not applicable") +//Findinf coefficient for a sphere corresponding to this bi are, +lambda1=3.0754,A1=1.9959; +x=(T3-T2)/(T1-T2); +tau=(-1/(lambda1^2))*log(x/A1); +disp(tau,"Fourier no is") +//Since fourier no is greater than 0.2, cooking time is determined from the definition of fourier no to be +t=(tau*(r^2))/a;//[seconds] +disp("minutes",(t/60),"The time taken for center of egg to reach 70 degree Celcius temperature") +else, + disp("the lumped system is not applicable") +end \ No newline at end of file diff --git a/587/CH4/EX4.4/example4_4.sce b/587/CH4/EX4.4/example4_4.sce new file mode 100755 index 000000000..7696f226b --- /dev/null +++ b/587/CH4/EX4.4/example4_4.sce @@ -0,0 +1,25 @@ +clear; +clc; + +//Example4.4[Heating of Brass Plates in an Oven] +T_in=20;//Initial uniform temperature of brass plate[degree Celcius] +T_f=500;//Temperature of the oven[degree Celcius] +t=7*60;//[seconds] +h=120;//combined convection and radiation heat transfer coefficient[W/m^2.degree Celcius] +L=0.04/2;//Thickness of plate 2L=0.004[m] +//Properties of brass at room temperature are:- +k=110;//Thermal conductivity[W/m.degree Celcius] +rho=8530;//density[kg/m^3] +Cp=380;//Specific Heat Capacity[J.kg.degree Celcius] +a=33.9*(10^(-6));//Thermal Diffusivity[m^2/s] +//Solution:- +Bi1=1/(k/(h*L)); +tau1=(a*t)/(L^2); +//For above values of biot no and fourier no we have +p=0.46;// p=(T0-T_f)/(T_in-T_f),where T0 is temperature of inner surface of plate at time t +x=L; +Bi2=Bi1; +//For above condition of x/L ratio and Biot number we have +q=0.99;//q=(T-T_f)/(T_in-T_f), where T is temperature of outer surface of plate after time t +T=T_f+((p*q)*(T_in-T_f));//[degree Celcius] +disp("degree Celcius",ceil (T),"The surface temperature of the plates when they leave the oven will be") diff --git a/587/CH4/EX4.5/example4_5.sce b/587/CH4/EX4.5/example4_5.sce new file mode 100755 index 000000000..d103b09f6 --- /dev/null +++ b/587/CH4/EX4.5/example4_5.sce @@ -0,0 +1,31 @@ +clear; +clc; + +//Example4.5[Cooling of a long Stainless Steel Cylindrical Shaft] +//Given:- +Ti=600;//Temperature of cylinder just after taking it out of the oven[degree Celcius] +h=80;//average heat transfer coefficient[W/m^2.degree Celcius] +t=45*60;//Time for cooling[seconds] +r=0.1;//Radius of cylinder[m] +l=1;//Length of cylinder[m] +//Properties of stainless steel cylinder +k=14.9;//Thermal conductivity[W/m.degree Celcius] +rho=7900;//Density[kg/m^3] +Cp=477;//Specific Heat Capacity[J/kg.degree Celcius] +a=3.95*(10^(-6));//Thermal diffusivity[m^2/s] +T_f=200;//Ambient temperature[degree Celcius] +//Solution:- +Bi1=(h*r)/k; +tau1=(a*t)/(r^2); +//For biot no=Bi1 and fourier no=tau1,we have +p=0.40;//p=(T(0)-T_f)/(Ti-T_f) +T_0=T_f+(p*(Ti-T_f));//[degree Celcius] +disp("degree Celcius",T_0,"The center temperature of the shaft after 45 minutes is") +//Determining actual heat transfer +m=rho*%pi*(r^2)*l;//[kg] +Q_max=m*Cp*(Ti-T_f)*(1/1000);//[kJ] +x=(Bi1^2)*tau1; +//For biot no= Bi1 and (h^2)at/(k^2)=x, we have +y=0.62;//y=Q/Q_max +Q=y*Q_max;//[kJ] +disp("kJ",round(Q),"The total heat transfer from the shaft during 45 minutes of cooling is") diff --git a/587/CH4/EX4.6/example4_6.sce b/587/CH4/EX4.6/example4_6.sce new file mode 100755 index 000000000..8b01c98e9 --- /dev/null +++ b/587/CH4/EX4.6/example4_6.sce @@ -0,0 +1,23 @@ +clear; +clc; + +//Example4.6[Minimum Burial Depth of Water Pipes to avoid Freezing] +//Given:- +//Soil properties:- +k=0.4;//Thermal conductivity[W/m.degree Celcius] +a=0.15*(10^(-6));//Thermal diffusivity[m^2/s] +T_in=15;//Initial uniform temperature of ground[degree Celcius] +T_x=0;//Temperature after 3 months[degree Celcius] +Ts=-10;//Temperature of surface[degree Celcius] +//Solution:- +//The temperature of the soil surrounding the pipes wil be 0 degree Celcius after three months in the case of minimum burial depth, therefore we have +x=(h/k)*(sqrt(a*t)); +//Since h tends to infinty +x=%inf; +y=(T_x-T_in)/(Ts-T_in); +//For values of x and y we have +neta=0.36; +t=90*24*60*60;//[seconds] +x=2*neta*sqrt(a*t);//[m] +disp("m",x,"Water pipes must be burried to a depth of at least ") +disp("so as to avoid freezing under the specified harsh winter conditions") diff --git a/587/CH4/EX4.7/example4_7.sce b/587/CH4/EX4.7/example4_7.sce new file mode 100755 index 000000000..0c62b61c3 --- /dev/null +++ b/587/CH4/EX4.7/example4_7.sce @@ -0,0 +1,16 @@ +clear; +clc; + +//Example4.7[Surface Temperature Rise of Heated Blocks] +//Given:- +flux=1250;//Constant solar heat flux[W/m^2] +T=20;//Temperature of black painted wood block[degree Celcius] +k_wood=1.26;//Thermal conductivity of wood at room temperature[W/m.K] +a_wood=1.1*(10^(-5));//Diffusivity of wood at room temperature[m^2/s] +k_aluminium=237;//Thermal conductivity of aluminium at room temperature[W/m.K] +a_aluminium=9.71*(10^(-5));//Diffusivity of aluminium at room temperature[m^2/s] +t=20*60;//[seconds] +//Solution:- +Ts_wood=T+((flux/k_wood)*(sqrt((4*a_wood*t)/%pi)));//[degree Celcius] +Ts_aluminium=T+((flux/k_aluminium)*(sqrt((4*a_aluminium*t)/%pi)));//[degree Celcius] +disp("respectively","degree Celcius",round (Ts_aluminium),"and",ceil (Ts_wood),"The surface temperature fro both the wood and aluminium blocks are ") \ No newline at end of file diff --git a/587/CH4/EX4.8/example4_8.sce b/587/CH4/EX4.8/example4_8.sce new file mode 100755 index 000000000..b8d935961 --- /dev/null +++ b/587/CH4/EX4.8/example4_8.sce @@ -0,0 +1,34 @@ +clear; +clc; + +//Example4.8[Cooling of a Short Brass Cylinder] +//Given:- +Ti=120;//Initial Temperature[degree Celcius] +T_ambient=25;//Temperature of atmospheric air[degree Celcius] +h=60;//convetcion heat transfer coefficient[W/m^2.degree Celcius] +r=0.05;//radius of cylinder[m] +L=0.06;//thickness[m] +a=3.39*(10^(-5));//Diffusivity of brass[m^2/s] +k=110;//Thermal conductivity of brass[W/m.degree Celcius] +t=900;//[seconds] +//Solution (a):- +disp("At the center of the plane wall") +tau1=(a*t)/(L^2); +Bi1=(h*L)/k; +disp("respectively",Bi1,"and",tau1,"Fourier no and Biot no are") +disp("At the center of the cylinder") +tau2=(a*t)/(r^2); +Bi2=(h*r)/k; +disp("respectively",Bi2,"and",tau2,"Fourier no and Biot no are") +theta_wall_c=0.8;//(T(0,t)-T_ambient)/(Ti-T_ambient) +theta_cyl_c=0.5;//(T(0,t)-T_ambient)/(Ti-T_ambient) +T_center=T_ambient+((theta_wall_c*theta_cyl_c)*(Ti-T_ambient));//[degree Celcius] +disp("degree Celcius",round (T_center),"The temperature at the center of the short cylinder is") +//Solution (b):- +//The centre of the top surface of the cylinder is still at the center of the lonf cylinder(r=0),but at the outer surface of the plane wall(x=L). +x=L;//[m] +y=x/L; +//For Bi=Bi1 and x=1 +theta_wall_L=0.98*theta_wall_c;//(T(L,t)-T_ambient)/(Ti-T_ambient) +T_surface=T_ambient+((theta_wall_L*theta_cyl_c)*(Ti-T_ambient));//[degree Celcius] +disp("degree Celcius",round (T_surface),"The temperature at the top surface of the cylinder") \ No newline at end of file diff --git a/587/CH4/EX4.9/example4_9.sce b/587/CH4/EX4.9/example4_9.sce new file mode 100755 index 000000000..8cd7a2a99 --- /dev/null +++ b/587/CH4/EX4.9/example4_9.sce @@ -0,0 +1,33 @@ +clear; +clc; + +//Example4.9[Heat transfer from a Short Cylinder] +//Given:- +Ti=120;//Initial Temperature[degree Celcius] +T_ambient=25;//Temperature of atmospheric air[degree Celcius] +rho=8530;//density of brass cyliner[kg/m^3] +Cp=0.380;//Specific heat of brass cylinder[kJ/kg.degree Celcius] +r=0.05;//radius[m] +H=0.12;//Height of cylinder[m] +h=60;//convetcion heat transfer coefficient[W/m^2.degree Celcius] +a=3.39*(10^(-5));//Diffusivity of brass [m^2/s] +k=110;//Thermal conductivity of brass[W/m.degree Celcius] +L=0.06;//[m] +t=900;//[seconds] +//Solution:- +m=rho*(%pi*(r^2)*H);//mass of cylinder[kg] +Q_max=m*Cp*(Ti-T_ambient);//[kJ] +disp("At the center of the plane wall") +tau1=(a*t)/(L^2); +Bi1=(h*L)/k; +x=(Bi1^2)*tau1; +//For given x and Bi1 +p=0.23;//(Q/Qmax) for plane wall +disp("At the center of the cylinder") +tau2=(a*t)/(r^2); +Bi2=(h*r)/k; +y=(Bi2^2)*tau2; +//For given y and Bi2 +q=0.47;//(Q/Qmax) for infinite cylinder +Q=Q_max*(p+(q*(1-p)));//[kJ] +disp("kJ",ceil (Q),"The total heat transfer from the cylinder during the first 15 minutes of cooling is") \ No newline at end of file diff --git a/587/CH5/EX5.1/example5_1.sce b/587/CH5/EX5.1/example5_1.sce new file mode 100755 index 000000000..d9ab2f9b9 --- /dev/null +++ b/587/CH5/EX5.1/example5_1.sce @@ -0,0 +1,26 @@ +clear; +clc; + +//Example5.1[Steady Heat Conduction in a Large Uranium Plate] +//Given:- +L=0.04;//Thickness of plate[m] +k=28;//Thermal conductivity[W/m.degree Celcius] +e_gen=5*(10^6);//Rate of heat generation per unit volume[W/m^3] +h=45;//Heat transfer coefficient[W/m^2] +T_ambient=30;//Ambient temperature[degree Celcius] +//Solutio:- +M=3;//No of nodes +//These nodes are chosen to be at the two surfaces of the plate and the mid point +del_x=L/(M-1);//Nodal Spacing[m] +//Let the nodes be 0,1 and 2. and temperatures at these nodes are +T0=0;//Temperature at node 0[degree Celcius] +//Finding temperatures at other two nodes using finite difference method +c1=e_gen*(del_x^2)/k; +c2=(-h*del_x*T_ambient/k)-(c1/2); +function[temp]=f1(T) +temp(1)=2*T(1)-T(2)-c1; +temp(2)=T(1)-1.032*T(2)-c2; +deff('[temp]=f1(T)',['temp_1=2*T(1)-T(2)-c1','temp_2=T(1)-1.032*T(2)-c2']) +//To find the solution assume an initial value x0=[a,b] +//then equate [xs,fxs,m]=fsolve(x0',f1) + \ No newline at end of file diff --git a/587/CH5/EX5.2/example5_2.sce b/587/CH5/EX5.2/example5_2.sce new file mode 100755 index 000000000..0d64682fb --- /dev/null +++ b/587/CH5/EX5.2/example5_2.sce @@ -0,0 +1,36 @@ +clear; +clc; + +//Example5.2[Heat transfer from triangular fins] +//Given:- +k=180;//Thermal conductivity of aluminium alloy[W/m.degree Celcius] +L=0.05;//length of fin[m] +b=0.01;//Base thickness of fin[m] +T_surr=25;//Temperature of surrounding[degree Celcius +h=15;//heat transfer coefficient[W/m^2.degree Celcius] +M=6;//No of equally spaced nodes along the fin +//Solution (a) +del_x=L/(M-1);//Nodal Spacing[m] +T0=200;//Temperature at node 0[degree Celcius] +theta=atan(b/2*L); +//sigmaQ_all_sides=kA_left((T_(m-1)-T_m)/del_X)+((T_(m+1)-T_m)/del_x)+(hA_conv(T_surr-T_m))=0 +//Simplifying above equation we get +disp("((5.5-m)T_(m-1))-((10.008-2m)Tm)+((4.5-m)T_m+1)=-0.29") +//Putting m=1,2,3,4 we get five equations in five unknowns +//Solving these five equations we get temperatures at node 1,2,3,4 and 5 respectively +function[node]=f5(T) + node(1)=-8.008*T(1)+3.5*T(2)+0*T(3)+0*T(4)+0*T(5)+900.209; + node(2)=3.5*T(1)-6.008*T(2)+2.5*T(3)+0*T(4)+0*T(5)+0.209; + node(3)=0*T(1)+2.5*T(2)-4.008*T(3)+1.5*T(4)+0*T(5)+0.209; + node(4)=0*T(1)+0*T(2)+1.5*T(3)-2.008*T(4)+0.5*T(5)+0.209; + node(5)=0*T(1)+0*T(2)+0*T(3)+1*T(4)-1.008*T(5)+0.209; + deff('[node]=f5(T)',['f_1=-8.008*T(1)+3.5*T(2)+0*T(3)+0*T(4)+0*T(5)+900.209','f_2=3.5*T(1)-6.008*T(2)+2.5*T(3)+0*T(4)+0*T(5)+0.209','f_3=0*T(1)+2.5*T(2)-4.008*T(3)+1.5*T(4)+0*T(5)+0.209','f_4=0*T(1)+0*T(2)+1.5*T(3)-2.008*T(4)+0.5*T(5)+0.209','f_5=0*T(1)+0*T(2)+0*T(3)+1*T(4)-1.008*T(5)+0.209']) + //Solution(b) + T1=T(1),T2=T(2),T3=T(3),T4=T(4),T5=T(5); + w=1;//width[m] + Q_fin=(h*w*del_x/cos(theta))*[(T0+2*(T1+T2+T3+T4)+T5-10*T_surr)];//[W] + disp("W",Q_fin,"The total rate of heat transfer from the fin is") + //Solution(c) + Q_max=(h*2*w*L/cos(theta)*(T0-T_surr));//[W] +neta=Q_fin/Q_max; +disp(neta,"Efficiency of the fin is") diff --git a/587/CH5/EX5.3/example5_3.sce b/587/CH5/EX5.3/example5_3.sce new file mode 100755 index 000000000..ea1f8c015 --- /dev/null +++ b/587/CH5/EX5.3/example5_3.sce @@ -0,0 +1,25 @@ +clear; +clc; + +//Example5.3[SteadLy Two-Dimensional Heat Conduction in L-Bars] +//Given:- +e_gen=2*(10^6);//Heat generated per unit volume[W/m^3] +k=15;//Thermal heat conductivity[W/m.degree Celcius] +T_ambient=25;//Temperature of ambient air[degree Celcius] +T_surface=90;//Temperature of the bottom surface[degree Celcius] +h=80//convection coefficient[W/m^2] +q_R=5000;//Heat flux to which right surface is subjected[W/m^2] +del_x=0.012,del_y=0.012;//Distance between equally spaced nodes[m] +//Solution:- +//After substituing values in equations of all nodal points finally we have nine equation and nine unknowns +function[temp]=f9(T) + temp(1)=-2.064*T(1)+1*T(2)+0*T(3)+1*T(4)+0*T(5)+0*T(6)+0*T(7)+0*T(8)+0*T(9)+11.2; + temp(2)=1*T(1)-4.128*T(2)+1*T(3)+0*T(4)+2*T(5)+0*T(6)+0*T(7)+0*T(8)+0*T(9)+22.4; + temp(3)=0*T(1)+1*T(2)-2.128*T(3)+0*T(4)+0*T(5)+1*T(6)+0*T(7)+0*T(8)+0*T(9)+12.8; + temp(4)=1*T(1)+0*T(2)+0*T(3)-4*T(4)+2*T(5)+109.2; + temp(5)=0*T(1)+1*T(2)+0*T(3)+1*T(4)-4*T(5)+1*T(6)+0*T(7)+0*T(8)+0*T(9)+109.2; + temp(6)=0*T(1)+0*T(2)+1*T(3)+0*T(4)+2*T(5)-6.128*T(6)+1*T(7)+0*T(8)+0*T(9)+212.0; + temp(7)=0*T(1)+0*T(2)+0*T(3)+0*T(4)+0*T(5)+1*T(6)-4.128*T(7)+1*T(8)+0*T(9)+202.4; + temp(8)=0*T(1)+0*T(2)+0*T(3)+0*T(4)+0*T(5)+0*T(6)+1*T(7)-4.128*T(8)+T(9)+202.4; + temp(9)=0*T(1)+0*T(2)+0*T(3)+0*T(4)+0*T(5)+0*T(6)+0*T(7)+1*T(8)-2.064*T(9)+105.2; + deff('[temp]=f9(T)',['f_1= -2.064*T(1)+1*T(2)+0*T(3)+1*T(4)+0*T(5)+0*T(6)+0*T(7)+0*T(8)+0*T(9)+11.2','f_2=1*T(1)-4.128*T(2)+T(3)+0*T(4)+2*T(5)+0*T(6)+0*T(7)+0*T(8)+0*T(9)+22.4','f_3=0*T(1)+T(2)-2.128*T(3)+0*T(4)+0*T(5)+T(6)+0*T(7)+0*T(8)+0*T(9)+12.8','f_4=T(1)+0*T(2)+0*T(3)-4*T(4)+2*T(5)+109.2','f_5=0*T(1)+T(2)+0*T(3)+T(4)-4*T(5)+T(6)+0*T(7)+0*T(8)+0*T(9)+109.2','f_6=0*T(1)+0*T(2)+T(3)+0*T(4)+2*T(5)-6.128*T(6)+T(7)+0*T(8)+0*T(9)+212.0','f_7=0*T(1)+0*T(2)+0*T(3)+0*T(4)+0*T(5)+T(6)-4.128*T(7)+T(8)+0*T(9)+202.4','f_8=0*T(1)+0*T(2)+0*T(3)+0*T(4)+0*T(5)+0*T(6)+T(7)-4.128*T(8)+T(9)+202.4','f_9=0*T(1)+0*T(2)+0*T(3)+0*T(4)+0*T(5)+0*T(6)+0*T(7)+T(8)-2.064*T(9)+105.2']) \ No newline at end of file diff --git a/587/CH5/EX5.4/example5_4.sce b/587/CH5/EX5.4/example5_4.sce new file mode 100755 index 000000000..ec3459878 --- /dev/null +++ b/587/CH5/EX5.4/example5_4.sce @@ -0,0 +1,32 @@ +clear; +clc; + +//Example5.4[Heat Loss through Chimneys] +//Given:- +k=1.4;//Thermal conductivity of concrete[W/m.degree Celcius] +A=0.2*0.2;//Area of flow section[m^2] +t=0.2;//Thickness of the wall[m] +Ti=300+273;//Average temperature of gases[K] +hi=70;//Convection heat transfer coefficient inside the chimney[W/m^2] +ho=21;//Convection heat transfer coefficient outside the chimney[W/m^2] +To=20+273;//Temperature od outer air[Kelvin] +e=0.9;//Emissivity +delx=0.1,dely=0.1;//Nodal spacing [m] +//Solution:- +//Substituing values in all nodal equations and and solving these equations we get temperature at all nodes +function[temp]=fu9(T) + temp(1)=7*T(1)-T(2)-T(3)-2865; + temp(2)=-T(1)+8*T(2)-2*T(4)-2865; + temp(3)=-T(1)+4*T(3)-2*T(4)-T(6); + temp(4)=-T(2)-T(3)+4*T(4)-T(5)-T(7); + temp(5)=-2*T(4)+4*T(5)-2*T(8); + temp(6)=-T(2)-T(3)+3.5*T(6)+(0.3645*(10^(-9))*(T(6)^4))-456.2; + temp(7)=-2*T(4)-T(6)+7*T(7)+(0.729*(10^(-9))*(T(7)^4))-T(8)-912.4; + temp(8)=-2*T(5)-T(7)+7*T(8)+(0.729*(10^(-9))*(T(8)^4))-912.4; + temp(9)=-T(8)+2.5*T(9)+(0.3645*(10^(-9))*(T(9)^4))-456.2; + deff('[temp]=fu9(T)',['f_1=7*T(1)-T(2)-T(3)-2865','f_2=-T(1)+8*T(2)-2*T(4)-2865','f_3=-T(1)+4*T(3)-2*T(4)-T(6)','f_4=-T(2)-T(3)+4*T(4)-T(5)-T(7)','f_5=-2*T(4)+4*T(5)-2*T(8)','f_6=-T(2)-T(3)+3.5*T(6)+(0.3645*(10^(-9))*(T(6)^4))-456.2','f_7=-2*T(4)-T(6)+7*T(7)+(0.729*(10^(-9))*(T(7)^4))-T(8)-912.4','f_8=-2*T(5)-T(7)+7*T(8)+(0.729*(10^(-9))*(T(8)^4))-912.4','f_9=-T(8)+2.5*T(9)+(0.3645*(10^(-9))*(T(9)^4))-456.2']) +T1=T(1),T2=T(2),T3=T(3),T4=T(4),T5=T(5),T6=T(6),T7=T(7),T8=T(8),T9=T(9); +T_wall=(0.5*T6+T7+T8+0.5*T9)/(0.5+1+1+0.5); +disp("Kelvin",T_wall,"The average temperature at the outer surface of the chimney weighed by the surface area is") +Q_chimney=(ho*4*0.6*1*(T_wall-To))+(e*5.67*(10^-8)*0.6*1*((T_wall^4)-((260^4))));//[W] +disp("W",Q_chimney,"The heat transfer is") \ No newline at end of file diff --git a/587/CH5/EX5.5/example5_5.sce b/587/CH5/EX5.5/example5_5.sce new file mode 100755 index 000000000..8c0669966 --- /dev/null +++ b/587/CH5/EX5.5/example5_5.sce @@ -0,0 +1,26 @@ +clear; +clc; + +//Example5.5[Transient Heat Conduction in a Large Uranium Plate] +//Given:- +k=28;//[W/m.degree Celcius] +a=12.5*10^(-6);//Thermal diffusivity[m^2/s] +T1_0=200,T2_0=200;//Initial Temperature[degree Celcius] +e_gen=5*10^6;//Heat generated per unit volume[W/m^3] +h=45;//heat transfer coefficient[W/m^2.degree Celcius] +T0=0;//Temperature at node 0[degree Celcius] +L=0.04;//[m] +M=3;//No of nodes +t=15;//[seconds] +//Solution (a):- +delx=L/(M-1);//[m] +//The nodes are 0,1 and 2 +tau=(a*t)/(delx^2);//Fourier no +//Substituing this value of tau in nodal equations +//The nodal temperatures T1_1 and T2_1 at t=15sec +T1_1=0.0625*T1_0+0.46875*T2_0+33.482;//[degree Celcius] +T2_1=0.9375*T1_0+0.032366*T2_0+34.386;//[degree Celcius] +//Similarly the nodal themperatures T1_2,T2_2 at t1=2*t=30sec are +T1_2=0.0625*T1_1+0.46875*T2_1+33.482;//[degree Celcius] +T2_2=0.9375*T1_1+0.032366*T2_1+34.386;//[degree Celcius] +disp("degree Celcius",T2_2,T1_2,"and",T2_1,T1_1,"Temperatures at node 1 and 2 are respectively") diff --git a/587/CH5/EX5.6/example5_6.sce b/587/CH5/EX5.6/example5_6.sce new file mode 100755 index 000000000..3d27a8876 --- /dev/null +++ b/587/CH5/EX5.6/example5_6.sce @@ -0,0 +1,49 @@ +clear; +clc; + +//Example5.6[Solar Energy Storage in Trombe Walls] +//Given:- +hin=10;//[W/m^2] +A=3*75;//[m^2] +Tin=21;//[degree Celcius] +k=0.69;//[W/m.degree Celcius] +a=4.44*10^(-7);//diffusivity[m^2/s] +kappa=0.77; +delx=0.06;//The nodal spacing[m] +L=0.3;//Length of wall[m] +Tout=0.6,q_solar=360;//Ambient temperature in degree Celcius and Solar Radiation between 7am to 10 am +//Solution:- +M=(L/delx)+1; +disp(M,"No of nodes are") +//Stability Criterion +del_t=(delx^2)/(3.74*a);//[seconds] +disp("s",del_t,"The maximum allowable value of the time step is") +//Therefore any step less than del_t can be used to solve this problem,for convinience let's choose +delt=900;//[seconds] +tao=a*delt/(delx^2); +disp(tao,"The mesh Fourier number is") +//Initially at 7am or t=0,the temperature of the wall is said to vary linearly between 21 degree Celcius at node 0 and -1 at node 5 +//Temp between two neighbouring nodes is +temp=(21-(-1))/5;//[degree Celcius] +T0_0=Tin; +T1_0=T0_0-temp; +T2_0=T1_0-temp; +T3_0=T2_0-temp; +T4_0=T3_0-temp; +T5_0=T4_0-temp; +T0_1=((1-3.74*tao)*T0_0)+(tao*(2*T1_0+36.5)); +T1_1=(tao*(T0_0+T2_0))+(T1_0*(1-(2*tao))); +T2_1=(tao*(T1_0+T3_0))+(T2_0*(1-(2*tao))); +T3_1=(tao*(T2_0+T4_0))+(T3_0*(1-(2*tao))); +T4_1=(tao*(T3_0+T5_0))+(T4_0*(1-(2*tao))); +T5_1=(T5_0*(1-(2.70*tao)))+(tao*((2*T4_0)+(0.70*Tout)+(0.134*q_solar))); +disp("Nodal temperatures at 7:15am are") +disp("degree Celcius",T0_1,"Node0:") +disp("degree Celcius",T1_1,"Node1:") +disp("degree Celcius",T2_1,"Node2:") +disp("degree Celcius",T3_1,"Node3:") +disp("degree Celcius",T4_1,"Node4:") +disp("degree Celcius",T5_1,"Node5:") +Q_wall=hin*A*delt*(((round(T0_1)+T0_0)/2)-Tin);//[J] +disp("J",Q_wall,"The amount of heat transfer during the first time step or during the first 15 min period is") +//Similarly using values from the table given we can find temperature at various nodes after required time interval diff --git a/587/CH6/EX6.1/example6_1.sce b/587/CH6/EX6.1/example6_1.sce new file mode 100755 index 000000000..04ba74322 --- /dev/null +++ b/587/CH6/EX6.1/example6_1.sce @@ -0,0 +1,25 @@ +clear; +clc; + +//Example6.1[Temperature Rise of Oil is a Journal Bearing] +//Given:- +k=0.145;//[W/m.K] +mu=0.8374;//[kg/m.s]or[N.s/m^2] +T1=20;//Temperature of both the plates[degree Celcius] +t=0.002;//Thickness of oil film between the plates[m] +v=12;//Velocity with which plates move[m/s] +//Solution (a):- +//Relation between velocity and temperature variation +disp("T(y)=T0+(mu*(v^2)/(2*k))[(y/L)-((y/L)^2)]") +//Solution(b):- +//The location of maximum temperature is determined by setting dT/dy=0 and solving for y +//(mu*(v^2)/(2*k*L))*(1-(2*y/L))=0 +L=1;//Random initialisation of variable L, where L is length of plates +y=L/2; +//T_max=T(L/2) +T_max=T1+((mu*(v^2)/(2*k))*(((L/2)/L)-(((L/2)^2)/(L^2)))); +disp("degree Celcius",ceil(T_max),"Maximum temperature occurs at mid plane and its value is") +//heat flux q0=-kdt/dy|y=0;=-kmu*v^2/(2*k*L) +q0=-(mu*k*(v^2)/(2*k*t))/1000;//Heat flux from one plate [kW/m^2] +qL=-((k*mu*(v^2))*(1-2)/(2*k*t*1000));//Heat flux from another plate[kW/m^2] +disp("kW/m^2",qL,"Heat fluxes at the two plates are equal in magnitude but opposite in sign and the value of magnitude is") diff --git a/587/CH6/EX6.2/example6_2.sce b/587/CH6/EX6.2/example6_2.sce new file mode 100755 index 000000000..a705ad377 --- /dev/null +++ b/587/CH6/EX6.2/example6_2.sce @@ -0,0 +1,19 @@ +clear; +clc; + +//Example6.2[Finding Convection Coefficient from Drag Measurement] +//Given:- +//Properties of air +rho=1.204;//[kg/m^3] +Cp=1007;//[J/kg.K] +Pr=0.7309;//Prandtl number +w=2;//Width of plate[m] +L=3;//Characteristic length of plate[m] +v=7;//velocity of air[m/s] +Fd=0.86;//Total grag force[N] +//Solution:- +As=2*w*L;//Since both sides of plate are exposed to air flow[m^2] +//For flat plates drag force is equivalent to friction coefficient Cf +Cf=Fd/(rho*As*(v^2)/2); +h=(Cf*rho*v*Cp)/(2*(Pr^(2/3)));//[W/m^2.degree Celcius] +disp("respectively","W/m^2.degree Celcius",h,"and",Cf,"Friction Factor and average heat transfer coefficient are") diff --git a/587/CH7/EX7.1/example7_1.sce b/587/CH7/EX7.1/example7_1.sce new file mode 100755 index 000000000..b8a237e46 --- /dev/null +++ b/587/CH7/EX7.1/example7_1.sce @@ -0,0 +1,33 @@ +clear; +clc; + +//Example7.1[Flow of hot oil over a Flat Plate] +//Given:- +T_oil=60;//Temp of engine oil[degree Celcius] +T_plate=20;//Temp of flat plate[degree Celcius] +Rec=5*10^5;//Critical reynolds number for laminar flow +Tf=(T_oil+T_plate)/2;//Film temperature[degree Celcius] +v=2;//[m/s] +//Properties of engine oil at film temperature +rho=876;//[kg/m^3] +Pr=2962;//Prandtl number +k=0.1444;//[W/m.degree Celcius] +nu=2.485*10^(-4);//dynamic viscosity[m^2/s] +L=5;//Length of plate[m] +ReL=(v*L)/nu; +if(ReLReC) then, + disp("Flow is not laminar") + //We have average Nusselt Number + Nu1=((0.037*(ReL1^(0.8)))-871)*(Pr^(1/3)); + disp(ceil(Nu1),"Nusselt Number is") + h1=k*Nu1/L1;//[W/m^2.degree Celcius] + As1=w1*L1;//Flow Area of plate[m^2] + Q1=h1*As1*(T_plate-T_air); + disp("W",Q1,"Heat Flow Rate is") +else, + disp("Flow is laminar") +end +//Solution(b) +L2=1.5;//Characteristic length of plate along flow of air[m] +ReL2=v*L2/nu_ac;//Reynolds Number +if(ReL2