From b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b Mon Sep 17 00:00:00 2001 From: priyanka Date: Wed, 24 Jun 2015 15:03:17 +0530 Subject: initial commit / add all books --- 587/CH2/EX2.10/example2_10.sce | 20 ++++++++++++++++++++ 1 file changed, 20 insertions(+) create mode 100755 587/CH2/EX2.10/example2_10.sce (limited to '587/CH2/EX2.10') diff --git a/587/CH2/EX2.10/example2_10.sce b/587/CH2/EX2.10/example2_10.sce new file mode 100755 index 000000000..ac5566c81 --- /dev/null +++ b/587/CH2/EX2.10/example2_10.sce @@ -0,0 +1,20 @@ +clear; +clc; + +//Example2.10[Combined Convection, Radiation and Heat Flux] +//Given:- +T_surf1=20;//Ambient temperature in the interior of the house[degree Celcius] +T_surf2=5;// Ambient temperature outside the house[degree Celcius] +L=0.2;// Thickness of the wall[m] +a=0.5;// absorptivity of outer surface of wall +h_in=6;//Convection heat transfer coefficient for inner surface of wall[W/m^2.degree Celcius] +h_out=25;//Convection heat transfer coefficient for outer surface of wall[W/m^2.degree Celcius] +k=0.7;//The thermal conductivity of wall material[W/m.degree Celcius] +e=0.9;//Emissivity of outer surface of wall +//Solution:- +//The heat transfer though the wall is given to be steady and one dimensional and thus temperature depends on x only i.e. T=T(x) +disp("The boundary condition ont the inner surface of the wall at x=0 can be expressed as -k(dT(0)/dx)=h_in[T_surf1-T(0)]") +disp("degree Celcius",T_surf1,"and","W/m^2.degree Celcius",h_in,"where h_in and T_surf are respectively ") +disp("The boundary condition on the outer surface at x=L can be expressed as ") +disp("-kdT(L)/dx=h_out[T(L)-T_surf2]+e*sigma[(T(L)^4)-(T_sky^4)]-a*q_solar") +disp("where T_sky is temperature of the sky and q_solar is the incident solar heat flux") \ No newline at end of file -- cgit