From b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b Mon Sep 17 00:00:00 2001 From: priyanka Date: Wed, 24 Jun 2015 15:03:17 +0530 Subject: initial commit / add all books --- 536/CH5/EX5.2/Example_5_2.sce | 37 +++++++++++++++++++++++++++++++++++++ 1 file changed, 37 insertions(+) create mode 100755 536/CH5/EX5.2/Example_5_2.sce (limited to '536/CH5/EX5.2') diff --git a/536/CH5/EX5.2/Example_5_2.sce b/536/CH5/EX5.2/Example_5_2.sce new file mode 100755 index 000000000..1a8c072ba --- /dev/null +++ b/536/CH5/EX5.2/Example_5_2.sce @@ -0,0 +1,37 @@ +clc; +clear; + +printf("\n Example 5.2\n"); + +M_p_d=0.2e-3; // Mean particle diameter +printf("\n Given:\n Mean particle diameter = %.1f mm",M_p_d*1e3); +f_r_w=0.5; //Flow rate of water +printf("\n Flow rate of water = %.1f kg/s",f_r_w); +id=25e-3; //Diameter of pipe +printf("\n Diameter of pipe = %d mm",id*1e3); +l=100; //length of pipe +printf("\n length of pipe = %d m",l); +t_vel=0.0239; //Terminal velocity of falling sand particles +printf("\n Terminal velocity of falling sand particles = %.4f m/s",t_vel); +//Assuming the mean velocity of the suspension is equal to the water velocity, that is, neglecting slip, then: +Um=f_r_w/(1000*%pi*id^2/4); +printf("\n\n Calculations:\n Mean velocity of suspension = %.2f m/s",Um); +Re=id*Um*1000/0.001; +printf("\n Reynolds no. of water alone = %d",Re); +//Assuming e/d = 0.008, then, from Figure 3.7: +phi=0.0046; +f=0.0092; +//From, equation 3.20, the head loss is: +hf=4*phi*l*Um^2/(9.81*id); +printf("\n Head loss = %.1f m water",hf); +iw=hf/l; +printf("\n Hydraulic gradient = %.3f m water/m",iw); +i=300*1000/(1000*9.81*100); +// Substituting in equation 5.20: +C=(iw/(i-iw)*(1100*9.81*id*(2.6-1)*t_vel)/(Um^2*Um))^-1; +printf("\n C = %.2f",C); +//If G kg/s is the mass flow of sand, then: +G=poly([0],'G'); +p=2600^-1*G-0.30*(2600^-1*G+.0005); +printf("\n Mass flow of sand = %.2f kg/s",roots(p)); +printf("") \ No newline at end of file -- cgit