From b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b Mon Sep 17 00:00:00 2001 From: priyanka Date: Wed, 24 Jun 2015 15:03:17 +0530 Subject: initial commit / add all books --- 536/CH12/EX12.4/Example_12_4.sce | 46 ++++++++++++++++++++++++++++++++++++++++ 1 file changed, 46 insertions(+) create mode 100755 536/CH12/EX12.4/Example_12_4.sce (limited to '536/CH12/EX12.4/Example_12_4.sce') diff --git a/536/CH12/EX12.4/Example_12_4.sce b/536/CH12/EX12.4/Example_12_4.sce new file mode 100755 index 000000000..0c4aeacfb --- /dev/null +++ b/536/CH12/EX12.4/Example_12_4.sce @@ -0,0 +1,46 @@ +clc; +clear; + +printf("\n Example 12.4\n"); + +u=3.5; //Velocity of air +d=25e-3; //Diameter of the pipe +l=6; //Length of the pipe +T1=290; //Temperature at enterance +T2=350; //Temperature at exit +rho=29/22.4*273/310; //density of air at 310 K +Meu=0.018e-3; //Viscosity of air at 310 K +//Taking the physical properties at 310 K and assuming that fully developed flow exists +Cp=1.003e3; //heat capapcity +k=0.024; //Thermal conductivity + +Re=d*u*rho/Meu; +Pr=Cp*Meu/k; + +printf("\n (a) Reynolds analogy"); +h1=0.032*(Re^-0.25)*Cp*rho*u;//....Equation 12.139 +printf("\n h = %.2f W/m^2 K",h1); +// on solving we get final equation as +theta_dash1=350-10^(log10(60)-(239.88*h1*1e-3/2.303)); +printf("\n The outlet temperature = %.1f K",theta_dash1) + +printf("\n\n (b) Taylor Prandtl Equation"); +h2=0.032*(Re^-0.25)*(1+2*Re^(-1/8)*(Pr-1))^-1*Cp*rho*u; +printf("\n h = %.2f W/m^2 K",h2); +// on solving we get final equation as +theta_dash2=350-10^(log10(60)-(239.88*h2*1e-3/2.303));//....Equation 12.140 +printf("\n The outlet temperature = %.1f K",theta_dash2) + +printf("\n\n (c) Universal velocity profile equation"); +h3=0.032*(Re^-0.25)*(1+0.82*Re^(-1/8)*((Pr-1)+log(0.83*Pr+0.17)))^-1*Cp*rho*u;//...equation 12.141 +printf("\n h = %.2f W/m^2 K",h3); +// on solving we get final equation as +theta_dash3=350-10^(log10(60)-(239.88*h3*1e-3/2.303)); +printf("\n The outlet temperature = %.1f K",theta_dash3) + +printf("\n\n (d) Nu=0.023*Re^0.8*Pr^0.33"); +h4=k/d*0.023*Re^0.8*Pr^0.33; +printf("\n h = %.2f W/m^2 K",h4); +// on solving we get final equation as +theta_dash4=350-10^(log10(60)-(239.88*h4*1e-3/2.303)); +printf("\n The outlet temperature = %.1f K",theta_dash4) -- cgit