From 7f60ea012dd2524dae921a2a35adbf7ef21f2bb6 Mon Sep 17 00:00:00 2001 From: prashantsinalkar Date: Tue, 10 Oct 2017 12:27:19 +0530 Subject: initial commit / add all books --- 534/CH8/EX8.2/8_2_Internal_flow.sce | 25 +++++++++++++++++++++++++ 1 file changed, 25 insertions(+) create mode 100644 534/CH8/EX8.2/8_2_Internal_flow.sce (limited to '534/CH8/EX8.2') diff --git a/534/CH8/EX8.2/8_2_Internal_flow.sce b/534/CH8/EX8.2/8_2_Internal_flow.sce new file mode 100644 index 000000000..3ad632e03 --- /dev/null +++ b/534/CH8/EX8.2/8_2_Internal_flow.sce @@ -0,0 +1,25 @@ +clear; +clc; +printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n Incropera / Dewitt / Bergman / Lavine \n EXAMPLE 8.2 Page 499 \n'); //Example 8.2 +// Length of tube needed to achieve the desired outlet temperature +//Local convection coefficient at the outlet + +//Operating Conditions +m = .1; //[kg/s] mass flow rate of water +Ti = 20+273; //[K] Inlet temp +To = 60+273; //[K] Outlet temperature +Di = .02; //[m] Inner Diameter +Do = .04; //[m] Outer Diameter +q = 10^6; //[w/m^3] Heat generation Rate +Tsi = 70+273; //[K] Inner Surface Temp +//Table A.4 Air Properties T = 313 K +cp = 4179; //[J/kg.K] specific heat + +L = 4*m*cp*(To-Ti)/(%pi*(Do^2-Di^2)*q); + +//From Newtons Law of cooling, Equation 8.27, local heat convection coefficient is +h = q*(Do^2-Di^2)/(Di*4*(Tsi-To)); + +printf("\n Length of tube needed to achieve the desired outlet temperature = %.1f m \n Local convection coefficient at the outlet = %i W/m^2.K",L,h); + +//END \ No newline at end of file -- cgit