From 7f60ea012dd2524dae921a2a35adbf7ef21f2bb6 Mon Sep 17 00:00:00 2001 From: prashantsinalkar Date: Tue, 10 Oct 2017 12:27:19 +0530 Subject: initial commit / add all books --- .../EX12.4/12_4_Blackbody_Angular_Radiation.sce | 26 ++++++++++++++++++++++ 1 file changed, 26 insertions(+) create mode 100644 534/CH12/EX12.4/12_4_Blackbody_Angular_Radiation.sce (limited to '534/CH12/EX12.4/12_4_Blackbody_Angular_Radiation.sce') diff --git a/534/CH12/EX12.4/12_4_Blackbody_Angular_Radiation.sce b/534/CH12/EX12.4/12_4_Blackbody_Angular_Radiation.sce new file mode 100644 index 000000000..6015f17bc --- /dev/null +++ b/534/CH12/EX12.4/12_4_Blackbody_Angular_Radiation.sce @@ -0,0 +1,26 @@ +clear; +clc; +printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n Incropera / Dewitt / Bergman / Lavine \n EXAMPLE 12.4 Page 743 \n')// Example 12.4 + +// Rate of emission per unit area over all directions between 0 degC and 60 degC and over all wavelengths between wavelengths 2 and 4 micro-m + +T = 1500 ;//[K] temperature of surface +stfncnstt = 5.67*10^-8 ;//[W/m^2.K^4] Stefan-Boltzmann constant + +//From Equation 12.26 Black Body Radiation +Eb = stfncnstt*T^4; //[W/m^2] + +//From Table 12.1 as wl1*T = 2*1500 (micro-m.K) +F02 = .273; +//From Table 12.1 as wl2*T = 4*1500 (micro-m.K) +F04 = .738; + +//From equation 12.10 and 12.11 +i1 = integrate('2*cos(x)*sin(x)','x',0,%pi/3); +delE = i1*(F04-F02)*Eb; + +printf("\n Rate of emission per unit area over all directions between 0 degC and 60 degC and over all wavelengths between wavelengths 2 micro-m and 4 micro-m = %.1e W/m^2",delE); +//END + + + -- cgit