From b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b Mon Sep 17 00:00:00 2001 From: priyanka Date: Wed, 24 Jun 2015 15:03:17 +0530 Subject: initial commit / add all books --- 530/CH9/EX9.7.c/example_9_7c.sce | 43 ++++++++++++++++++++++++++++++++++++++++ 1 file changed, 43 insertions(+) create mode 100755 530/CH9/EX9.7.c/example_9_7c.sce (limited to '530/CH9/EX9.7.c') diff --git a/530/CH9/EX9.7.c/example_9_7c.sce b/530/CH9/EX9.7.c/example_9_7c.sce new file mode 100755 index 000000000..ee0e75c4f --- /dev/null +++ b/530/CH9/EX9.7.c/example_9_7c.sce @@ -0,0 +1,43 @@ +clear; +clc; + +// A Textbook on HEAT TRANSFER by S P SUKHATME +// Chapter 9 +// Mass Transfer + + +// Example 9.7(c) +// Page 366 +printf("Example 9.7(c), Page 366 \n \n"); + +D = 0.04 ; // [m] +V = 1.9 ; // [m/s] + +// (c) To show that mass flux of water is very small compared to the mass flux of air flowing in the pipe +// Properties of air at 27 degree C +v = 15.718*10^-6 ; // [m^2/s] +rho = 1.177 ; // [kg/m^3] +Pr = 0.7015 ; +Cp = 1005 ; // [J/kg K] +k = 0.02646 ; // [W/m K] +// From Table 9.2 +Dab = 2.54 * 10^-5 ; // [m^2/s] +Sc = v/Dab ; +Re = V*D/v; +// The flow is turbulent and eqn 9.6.5 may be applied +// let r = h/h_m +r = rho*Cp*((Sc/Pr)^(2/3)); +// From Blasius equation 4.6.4a +f = 0.079*Re^(-0.25); + +// From steam table +rho_aw = 1/38.77 ; // [kg/m^3] +// let X = (m_a/A)_max +X = f*rho_aw; // [kg/m^2 s] + +// let Y = mass flux of air in pipe = (m/A) +Y = rho*V ; // [kg/m^2 s] +ratio = X/Y ; +percent = ratio*100; + +printf("(c) (m_a/A)_max/(m_a/A) = %f percent Thus, mass flux of water is very small compared to the mass flux of air flowing in the pipe. ",percent ); \ No newline at end of file -- cgit