From b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b Mon Sep 17 00:00:00 2001 From: priyanka Date: Wed, 24 Jun 2015 15:03:17 +0530 Subject: initial commit / add all books --- 530/CH8/EX8.2/example_8_2.sce | 34 ++++++++++++++++++++++++++++++++++ 1 file changed, 34 insertions(+) create mode 100755 530/CH8/EX8.2/example_8_2.sce (limited to '530/CH8/EX8.2/example_8_2.sce') diff --git a/530/CH8/EX8.2/example_8_2.sce b/530/CH8/EX8.2/example_8_2.sce new file mode 100755 index 000000000..77775b641 --- /dev/null +++ b/530/CH8/EX8.2/example_8_2.sce @@ -0,0 +1,34 @@ +clear; +clc; + +// A Textbook on HEAT TRANSFER by S P SUKHATME +// Chapter 8 +// Condensation and Boiling + + +// Example 8.2 +// Page 321 +printf("Example 8.2, Page 321 \n \n"); + +Ts = 262 ; // [K] +D = 0.022 ; // [m] +Tw = 258 ; // [K] + +Tm = (Ts+Tw)/2; +// Properties at Tm +rho = 1324 ; // [kg/m^3] +k = 0.1008 ; // [W/m K] +v = 1.90*10^-7 // [m^2/s]; +lambda = 215.1*10^3 ; // [J/kg] +g = 9.81 ; // [m/s^2] +u = v*rho ; // Viscosity + +// From eqn 8.4.1 +h = 0.725*[lambda*(rho^2)*g*(k^3)/((Ts-Tw)*u*D)]^(1/4); + +rate = h*%pi*D*(Ts-Tw) /lambda ; // [kg/s m] +Re = 4*rate/u ; + +printf("Heat transfer coefficient = %f W/m^2 K\n",h); +printf("Condensation rate per unit length = %f kg/s m \n",rate); +printf("Film Reynolds number = %f \n",Re); -- cgit