From b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b Mon Sep 17 00:00:00 2001 From: priyanka Date: Wed, 24 Jun 2015 15:03:17 +0530 Subject: initial commit / add all books --- 530/CH4/EX4.3/example_4_3.sce | 49 +++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 49 insertions(+) create mode 100755 530/CH4/EX4.3/example_4_3.sce (limited to '530/CH4/EX4.3/example_4_3.sce') diff --git a/530/CH4/EX4.3/example_4_3.sce b/530/CH4/EX4.3/example_4_3.sce new file mode 100755 index 000000000..c40e7ade9 --- /dev/null +++ b/530/CH4/EX4.3/example_4_3.sce @@ -0,0 +1,49 @@ +clear; +clc; + +// A Textbook on HEAT TRANSFER by S P SUKHATME +// Chapter 4 +// Principles of Fluid Flow + +// Example 4.3 +// Page 181 +printf("Example 4.3, Page 181 \n\n") +P = 80 * 10^3 ; // [Pa] +L = 10 ; // [m] +V_bar = 1.9 ; // [m/s] +l = 0.25 ; // [m] +b = 0.15 ; // [m] + +// Fully developed flow + +// From Table A.2, for air at ! atm pressure and 25 degree C +rho = 1.185 ; // [kg/m^3] +mew = 18.35 * 10^-6 ; // [kg/m s] + +// At 80 kPa and 25 degree C +rho1 = rho*(80/101.3) ; // [kg/m^3] + +// For given duct r=(b/a) +r = b/l; + +D_e = (4*l/2*b/2)/(l/2 + b/2); // [m] + +// From eqn 4.6.7 + +D_l = [2/3 + 11/24*0.6*(2-0.6)]*D_e ; // [m] + +// Reynolds no based on D_l + +Re = rho1*D_l*V_bar/mew; +printf("Reynolds no = %f \n",Re); + +f = 0.079*(Re^-0.25) ; +printf("f = %f \n",f); + +// From eqn 4.4.17 + +delta_P = 4*f*(L/D_l)*(rho1*(V_bar^2)/2); +printf("Pressure drop = %f Pa \n",delta_P); + +power = delta_P*(V_bar*l*b) +printf("Power required = %f W",power); \ No newline at end of file -- cgit