From b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b Mon Sep 17 00:00:00 2001 From: priyanka Date: Wed, 24 Jun 2015 15:03:17 +0530 Subject: initial commit / add all books --- 530/CH3/EX3.14/example_3_14.sce | 33 +++++++++++++++++++++++++++++++++ 1 file changed, 33 insertions(+) create mode 100755 530/CH3/EX3.14/example_3_14.sce (limited to '530/CH3/EX3.14/example_3_14.sce') diff --git a/530/CH3/EX3.14/example_3_14.sce b/530/CH3/EX3.14/example_3_14.sce new file mode 100755 index 000000000..96ed5ccdf --- /dev/null +++ b/530/CH3/EX3.14/example_3_14.sce @@ -0,0 +1,33 @@ +clear; +clc; + +// A Textbook on HEAT TRANSFER by S P SUKHATME +// Chapter 3 +// Thermal Radiation + +// Example 3.14 +// Page 147 +printf("Example 3.14, Page 147 \n\n") + +D = 1 ; // [m] +r = 6250 ; // [km] +D_surf = 300 ; // [km] +s = 5.670*10^-8; +e = 0.3 ; +Tc = -18+273 ; // [K] +T_surf = 27+273 ; // [K] + +// Rate of emissino of radiant energy from the two faces of satellite disc +r_emission = 2*e*%pi*((D/2)^2)*s*Tc^4; // [W] + +// A2*F21 = A1*F12 +sina = (r/(r+D_surf)); +F12 = sina^2; + +// Rate at which the satellite receives and absorbs energy coming from earth +r_receive = e*s*(%pi*((D/2)^2))*F12*T_surf^4; // [W] + +r_loss = r_emission - r_receive; // [W] + +printf("Net Rate at which energy is leaving the satellite = %f W",r_loss); + -- cgit