From b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b Mon Sep 17 00:00:00 2001 From: priyanka Date: Wed, 24 Jun 2015 15:03:17 +0530 Subject: initial commit / add all books --- 530/CH1/EX1.2/example_1_2.sce | 38 ++++++++++++++++++++++++++++++++++++++ 1 file changed, 38 insertions(+) create mode 100755 530/CH1/EX1.2/example_1_2.sce (limited to '530/CH1/EX1.2') diff --git a/530/CH1/EX1.2/example_1_2.sce b/530/CH1/EX1.2/example_1_2.sce new file mode 100755 index 000000000..4818bcfd0 --- /dev/null +++ b/530/CH1/EX1.2/example_1_2.sce @@ -0,0 +1,38 @@ +clear; +clc; +// Textbook of Heat Transfer(4th Edition)) , S P Sukhatme +// Chapter 1 - Introduction + +//Example 1.2 +// Page 14 +printf("Example 1.2, Page 14 \n \n") +//Solution: +i=950; // radiation flux [W/m^2] +A=1.5; // area [m^2] +T_i=61; // inlet temperature +T_o=69; // outlet temperature +mdot=1.5; // [kg/min] , mass flow rate +Mdot=1.5/60; // [kg/sec] +Q_conductn=50; //[W] +t=0.95; // transmissivity +a=0.97;// absoptivity +// from appendix table A.1 at 65 degree C +C_p= 4183 ; // [J/kg K] +// Using Equation 1.4.15 , assuming that the flow through the tubes is steady and one dimensional. +// in this case (dW/dt)_shaft = 0 +// assuming (dW/dt)_shear is negligible +// eqn(1.4.15) reduces to +q=Mdot*C_p*(T_o-T_i); + +// let 'n' be thermal efficiency +n=q/(i*A); +n_percent=n*100; + + +// equation 1.4.13 yields dQ/dt = 0 +Q_re_radiated=(i*A*t*a)-Q_conductn-q; // [W] + + +printf("Useful heat gain rate is %f W \n",q); +printf("Thermal efficiency is %e i.e. %f per cent \n",n,n_percent); +printf("The rate at which energy is lost by re-radiation and convection is %f W",Q_re_radiated) \ No newline at end of file -- cgit