From b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b Mon Sep 17 00:00:00 2001 From: priyanka Date: Wed, 24 Jun 2015 15:03:17 +0530 Subject: initial commit / add all books --- 497/CH18/EX18.5/Chap18_Ex5.sce | 119 +++++++++++++++++++++++++++++++++++++++++ 1 file changed, 119 insertions(+) create mode 100755 497/CH18/EX18.5/Chap18_Ex5.sce (limited to '497/CH18/EX18.5') diff --git a/497/CH18/EX18.5/Chap18_Ex5.sce b/497/CH18/EX18.5/Chap18_Ex5.sce new file mode 100755 index 000000000..b660d006b --- /dev/null +++ b/497/CH18/EX18.5/Chap18_Ex5.sce @@ -0,0 +1,119 @@ +//Kunii D., Levenspiel O., 1991. Fluidization Engineering(II Edition). Butterworth-Heinemann, MA, pp 491 + +//Chapter-18, Example 5, Page 468 +//Title: Design of a Roaster for Finely Ground Ore +//========================================================================================================== + +clear +clc + +//INPUT +T=900;//Temperature in roaster in degree C +P=101325;//Pressure in Pa +R=8.314;//Universal gas constant +dpbar=150;//Average particle size in micrometer +rhosbar=4130;//Average particle density in kg/m^3 +kc=0.015//Rate constant in m/s for reaction which follows shrinking core model +Ds=8E-6;//Diffusion coefficient of solid in m^2/s +uo=0.6;//Superficial gas velocity in m/s +D=2.3E-4;//Diffusion coefficient of gas in m^2/s +Lm=1;//Length of fixed bed in m +dte=0.4;//Equivalent diameter of bed +umf=0.025;//Velocity at minimum fluidization condition in m/s +ephsilonm=0.45;//Void fraction of fixed bed +ephsilonmf=0.50;//Void fraction at minimum fluidized condition +db=0.2;//Estimated bubble size in m +gammab=0.005;//Ratio of volume of dispersed solids to that of bubble phase +Fo=2;//Feed rate of solids in kg/s +XA=0.6677;//Conversion of Oxygen +xA=0.21;//Mole fraction of oxygen in feed +mB=0.09744;//Molecular weight of ZnS +F=0.85;//Fraction of open area +g=9.81;//Acceleration due to gravity in square m/s^2 +pi=3.14; + +//CALCULATION +//(a)Extreme Calculation +a=3/2;//Stoichiometric coefficient of Oxygen in the reaction equation +At=(Fo/mB)*(a)/(uo*(273/(T+273))*(XA*xA)/0.0224); +dt=sqrt(At/F*4/pi); + +//(b)The Three-Step Procedure +//Step 1. Conversion of gas +ubr=0.711*(g*db)^0.5;//Rise velocity of bubble from Eqn.(6.7) +ub=1.6*{(uo-umf)+1.13*db^0.5}*dte^1.35+ubr;//Bubble rise velocity for Geldart B particle +delta=uo/ub;//Fraction of bed in bubbles from Eqn.(6.29) +ephsilonf=1-(1-delta)*(1-ephsilonmf);//Void fraction of fixed bed from Eqn.(6.20) +fw=0.15;//Wake volume to bubble volume from Fig.(5.8) +gammac=(1-ephsilonmf)*((3/(ubr*ephsilonmf/umf-1))+fw);//Volume of solids in cloud to that of the bubble from Eqn.(6.36) +gammae=((1-ephsilonmf)*((1-delta)/delta))-gammab-gammac;//Volume of solids in emulsion to that of the bubble from Eqn.(6.35) +Kbc=4.5*(umf/db)+5.85*((D^0.5*g^0.25)/db^(5/4));//Gas interchange coefficient between bubble and cloud from Eqn.(10.27) +Kce=6.77*((D*ephsilonmf*0.711*(g*db)^0.5)/db^3)^0.5;//Gas interchange coefficient between emulsion and cloud from Eqn.(10.34) +x=delta*Lm*(1-ephsilonm)/((1-ephsilonf)*uo);//Term Lf/ub of Eqn.(12.16) from Eqn.(6.19) +CAi=xA*P/(R*(T+273));//Initial concentration of oxygen + +//Step 2.Conversion of solids +rhob=rhosbar/mB;//Density of ZnS +kbar=(kc^-1+(dpbar*10^-6/(12*Ds))^-1)^-1;//Modified rate constant from Eqn.(11) +tbar=At*Lm*(1-ephsilonm)*rhosbar/Fo;//Mean residence time of solids +Krguess=2;//Guess value of Kr +function[fn]=solver_func(Kr)//Function defined for solving the system + Kf=gammab*Kr+1/((1/Kbc)+(1/(gammac*Kr+1/((1/Kce)+(1/(gammae*Kr))))));//Reaction rate for fluidized bed from Eqn.(14) + XA=1-exp(-x*Kf);//Conversion of oxygen from Eqn.(42) + CAbar=(CAi*XA*uo)/(Kr*Lm*(1-ephsilonm));//Average concentration of oxygen from Eqn.(43) + tou=rhob*dpbar*10^-6*a/(2*kbar*CAbar);//Time for complete reaction from Eqn.(9) + y=tbar/tou;//Term tbar/tou + XBbar=3*y-6*y^2+6*y^3*(1-exp(-1/y));//Average conversion of ZnS from Eqn.(22) + //Step 3. Material balance of both streams + fn=(Fo/mB)*XBbar-(At*uo*CAi*XA/a);//From Eqn.(44b) +endfunction +[Kr]=fsolve(Krguess,solver_func,1E-6);//Using inbuilt function fsolve for solving for Kr +Kf=gammab*Kr+1/((1/Kbc)+(1/(gammac*Kr+1/((1/Kce)+(1/(gammae*Kr))))));//Reaction rate for fluidized bed from Eqn.(14) +XA=1-exp(-x*Kf);//Conversion of oxygen from Eqn.(42) +CAbar=(CAi*XA*uo)/(Kr*Lm*(1-ephsilonmf));//Average concentration of oxygen from Eqn.(43) +tou=rhob*dpbar*10^-6*a/(2*kbar*CAbar);//Time for complete reaction from Eqn.(9) +y=tbar/tou;//Term tbar/tou +XBbar=3*y-6*y^2+6*y^3*(1-exp(-1/y));//Average conversion of ZnS from Eqn.(22) + + +//(c) For other feed rates of solids +F1=[2;2.5;3;3.5];//Various feed rates of solids in kg/s +n=length(F1) +i=1; +Krguess1=2;//Guess value of Kr +while i<=n + tbar1(i)=At*Lm*(1-ephsilonm)*rhosbar/F1(i);//Mean residence time of solids + function[fn]=solver_func1(Kr)//Function defined for solving the system + Kf1=gammab*Kr+1/((1/Kbc)+(1/(gammac*Kr+1/((1/Kce)+(1/(gammae*Kr))))));//Reaction rate for fluidized bed from Eqn.(14) + XA1=1-exp(-x*Kf1);//Conversion of oxygen from Eqn.(42) + CAbar1=(CAi*XA1*uo)/(Kr*Lm*(1-ephsilonm));//Average concentration of oxygen from Eqn.(43) + tou1=rhob*dpbar*10^-6*a/(2*kbar*CAbar1);//Time for complete reaction from Eqn.(9) + y1(i)=tbar1(i)/tou1;//Term tbar/tou + XBbar1(i)=3*y1(i)-6*y1(i)^2+6*y1(i)^3*(1-exp(-1/y1(i)));//Average conversion of ZnS from Eqn.(22) + //Step 3. Material balance of both streams + fn=(F1(i)/mB)*XBbar1(i)-(At*uo*CAi*XA1/a);//From Eqn.(44b) + endfunction + [Kr1(i)]=fsolve(Krguess1,solver_func1,1E-6);//Using inbuilt function fsolve for solving Eqn.(23) for tou + Kf1(i)=gammab*Kr1(i)+1/((1/Kbc)+(1/(gammac*Kr1(i)+1/((1/Kce)+(1/(gammae*Kr1(i)))))));//Reaction rate for fluidized bed from Eqn.(14) + XA1(i)=1-exp(-x*Kf1(i));//Conversion of oxygen from Eqn.(42) + CAbar1(i)=(CAi*XA1(i)*uo)/(Kr1(i)*Lm*(1-ephsilonmf));//Average concentration of oxygen from Eqn.(43) + tou1(i)=rhob*dpbar*10^-6*a/(2*kbar*CAbar1(i));//Time for complete reaction from Eqn.(9) + y1(i)=tbar1(i)/tou1(i);//Term tbar/tou + XBbar1(i)=3*y1(i)-6*y1(i)^2+6*y1(i)^3*(1-exp(-1/y1(i)));//Average conversion of ZnS from Eqn.(22) + i=i+1; +end + +//OUTPUT +printf('\nExtreme Calculation'); +printf('\n\tDiameter of tube with all its internals:%fm',dt); +printf('\nThree step procedure'); +printf('\n\tConversion of ZnS:%f',XBbar); +printf('\nFor other feed rates of solids'); +printf('\n\tFeed(kg/s)\ttbar(s)\t\tXBbar/XA\tKrbar(s^-1)\tCAbar/CAi\ttou(s)\t\tXA\t\tXB'); +i=1; +while i<=n + mprintf('\n\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f',F1(i),tbar1(i),XBbar1(i)/XA1(i),Kr1(i),CAbar1(i)/CAi,tou1(i),XA1(i),XBbar1(i)); + i=i+1; +end + +//====================================END OF PROGRAM ====================================================== \ No newline at end of file -- cgit