From b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b Mon Sep 17 00:00:00 2001 From: priyanka Date: Wed, 24 Jun 2015 15:03:17 +0530 Subject: initial commit / add all books --- 497/CH17/EX17.1/Chap17_Ex1.sce | 110 +++++++++++++++++++++++++++++++++++++++++ 1 file changed, 110 insertions(+) create mode 100755 497/CH17/EX17.1/Chap17_Ex1.sce (limited to '497/CH17/EX17.1') diff --git a/497/CH17/EX17.1/Chap17_Ex1.sce b/497/CH17/EX17.1/Chap17_Ex1.sce new file mode 100755 index 000000000..280e306ee --- /dev/null +++ b/497/CH17/EX17.1/Chap17_Ex1.sce @@ -0,0 +1,110 @@ +//Kunii D., Levenspiel O., 1991. Fluidization Engineering(II Edition). Butterworth-Heinemann, MA, pp 491 + +//Chapter-17, Example 1, Page 434 +//Title: Reactor Development Program +//========================================================================================================== + +clear +clc + +//INPUT +dt=[0.081;0.205;3.6];//Reactor diameter for the three reactors in m +dte=[0.04;0.12;0.70];//Equivalent diameters for the three reactors in m +db=[0.05;0.057;0.07];//Estimated bubble size in the three reactors in m +Kr1=1.3889;//Kinetic constant for Reaction 1 in s^-1 +Kr2=0.6111;//Kinetic constant for Reaction 2 in s^-1 +Kr3=0.022;//Kinetic constant for Reaction 3 in s^-1 +dp=60;//Particle size in micrometer +ephsilonm=0.50;//Void fraction of fixed bed +ephsilonmf=0.55;//Void fraction at minimum fluidized condition +umf=0.006;////Velocity at minimum fluidization condition in m/s +D=2E-5;//Diffusion coefficient of gas in m^2/s +gammab=0.005;//Ratio of volume of dispersed solids to that of bubble phase +uo=0.2;//Superficial gas velocity in m/s +XA=0.9;//Conversion +g=9.81;//Acceleration due to gravity in square m/s^2 + +//CALCULATION +Kr12=Kr1+Kr2; +n=length(dt); +i=1; +while i<=n + //Preliminary Calcualtions + ubr(i)=0.711*(g*db(i))^0.5;//Rise velocity of bubble from Eqn.(6.7) + ub(i)=1.55*{(uo-umf)+14.1*(db(i)+0.005)}*dte(i)^0.32+ubr(i);//Bubble velocity for Geldart A particles from Equation from Eqn.(6.11) + delta(i)=uo/ub(i);//Fraction of bed in bubbles from Eqn.(6.29) + ephsilonf(i)=1-(1-delta(i))*(1-ephsilonmf);//Void fraction of fixed bed from Eqn.(6.20) + fw=0.6;//Wake volume to bubble volume from Fig.(5.8) + gammac(i)=(1-ephsilonmf)*((3/(ubr(i)*ephsilonmf/umf-1))+fw);//Volume of solids in cloud to that of the bubble from Eqn.(6.36) + gammae(i)=((1-ephsilonmf)*((1-delta(i))/delta(i)))-gammab-gammac(i);//Volume of solids in emulsion to that of the bubble from Eqn.(6.35) + Kbc(i)=4.5*(umf/db(i))+5.85*((D^0.5*g^0.25)/db(i)^(5/4));//Gas interchange coefficient between bubble and cloud from Eqn.(10.27) + Kce(i)=6.77*((D*ephsilonmf*0.711*(g*db(i))^0.5)/db(i)^3)^0.5;//Gas interchange coefficient between emulsion and cloud from Eqn.(10.34) + //Effective rate constant from Eqn.(12.32) + Kf12(i)=(gammab*Kr12+1/((1/Kbc(i))+(1/(gammac(i)*Kr12+1/((1/Kce(i))+(1/(gammae(i)*Kr12)))))))*(delta(i)/(1-ephsilonf(i))); + //Rate of reaction 2 for fluidized bed from Eqn.(12.14) + Kf3(i)=(gammab*Kr3+1/((1/Kbc(i))+(1/(gammac(i)*Kr3+1/((1/Kce(i))+(1/(gammae(i)*Kr3)))))))*(delta(i)/(1-ephsilonf(i))); + //Rate of raection with respect to A from Eqn.(12.35) + KfA(i)=[[Kbc(i)*Kce(i)/gammac(i)^2+(Kr12+Kce(i)/gammac(i)+Kce(i)/gammae(i))*(Kr3+Kce(i)/gammac(i)+Kce(i)/gammae(i))]*delta(i)*Kbc(i)*Kr12*Kr3/(1-ephsilonf(i))] /[[(Kr12+Kbc(i)/gammac(i))*(Kr12+Kce(i)/gammae(i))+Kr12*Kce(i)/gammac(i)]*[(Kr3+Kbc(i)/gammac(i))*(Kr3+Kce(i)/gammae(i))+Kr3*Kce(i)/gammac(i)]]; + KfAR(i)=((Kr1/Kr12)*Kf12(i))-KfA(i);//Rate of reaction from Eqn.(12.34) + KfAR1(i)=((Kr1/Kr12)*Kf12(i));//Since KfA is small + + //(b)Relate Selectivity with conversion in three reactors + x=-log(1-XA);//The term Kf12*tou in Eqn.(12.26) + tou(i)=x/Kf12(i);//Residence time from Eqn.(12.26) + y(i)=(KfAR1(i)/(Kf3(i)-Kf12(i)))*(exp(-x)-exp(-tou(i)*Kf3(i)));//CR/CAi from Eqn.(12.27) + SR(i)=y(i)/XA;//Selectivity of R + + //(c)Relate exit composition to space time + tou1=5;//Space time in s + XA1(i)=1-exp(-Kf12(i)*tou1);//Conversion from Eqn.(12.26) + y1(i)=((KfAR1(i)/(Kf12(i)-Kf3(i)))*[exp(-Kf3(i)*tou1)-exp(-Kf12(i)*tou1)]);//CR/CAi R from Eqn.(12.27) + + //(d)Calculate height of bed needed to maximize production + y2(i)=(KfAR1(i)/Kf12(i))*(Kf12(i)/Kf3(i))^(Kf3(i)/(Kf3(i)-Kf12(i)));//CRmax/CAi R from Eqn.(12.37) + tou2(i)=log(Kf3(i)/Kf12(i))/(Kf3(i)-Kf12(i));//Space time from Eqn.(38) + Lf(i)=(uo/(1-ephsilonf(i)))*tou2(i);//Length of bed at fully fluidized condition from Eqn.(12.5) + Lm(i)=Lf(i)*(1-ephsilonf(i))/(1-ephsilonm);//Length of bed when settled + XA2(i)=1-exp(-Kf12(i)*tou2(i));//Conversion from Eqn.(12.26) + i=i+1; +end + +//OUTPUT +printf('\nLet Laboratory, Pilot plant, Semicommercial unit be Reactor 1,2 & 3 respectively'); +printf('\n(a)Relation between effective rate constant(Kf12) to the gas flow rate(uo)'); +printf('\n\tReactor No.\tKf12(s^-1)\tuo(m/s)'); +i=1; +while i<=n + mprintf('\n\t%1.0f',i); + mprintf('\t\t%f',Kf12(i)); + mprintf('\t%f',uo); + i=i+1; +end +printf('\n(b)Relation between selectivity with conversion'); +printf('\n\tReactor No.\tKf12(s^-1)\tSR(mol R formed/mol A reacted)'); +i=1; +while i<=n + mprintf('\n\t%1.0f',i); + mprintf('\t\t%f',Kf12(i)); + mprintf('\t%f',SR(i)); + i=i+1; +end +printf('\n(c)Relation between exit compostion and space time'); +printf('\n\tReactor No.\tXA\t\tCR/CAi'); +i=1; +while i<=n + mprintf('\n\t%1.0f',i); + mprintf('\t\t%f',XA1(i)); + mprintf('\t%f',y1(i)); + i=i+1; +end +printf('\n(d)Height of bed needed to maximize the production of acrylonitrile'); +printf('\n\tReactor No.\tLm(m)\t\tXA'); +i=1; +while i<=n + mprintf('\n\t%1.0f',i); + mprintf('\t\t%f',Lm(i)); + mprintf('\t%f',XA2(i)); + i=i+1; +end + +//====================================END OF PROGRAM ====================================================== \ No newline at end of file -- cgit