From b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b Mon Sep 17 00:00:00 2001 From: priyanka Date: Wed, 24 Jun 2015 15:03:17 +0530 Subject: initial commit / add all books --- 497/CH16/EX16.1/Chap16_Ex1.sce | 41 +++++++++++++++++++++ 497/CH16/EX16.2/Chap16_Ex2.sce | 78 ++++++++++++++++++++++++++++++++++++++++ 497/CH16/EX16.3/Chap16_Ex3.sce | 29 +++++++++++++++ 497/CH16/EX16.4/Chap16_Ex4.sce | 62 ++++++++++++++++++++++++++++++++ 497/CH16/EX16.5/Chap16_Ex5.sce | 82 ++++++++++++++++++++++++++++++++++++++++++ 5 files changed, 292 insertions(+) create mode 100755 497/CH16/EX16.1/Chap16_Ex1.sce create mode 100755 497/CH16/EX16.2/Chap16_Ex2.sce create mode 100755 497/CH16/EX16.3/Chap16_Ex3.sce create mode 100755 497/CH16/EX16.4/Chap16_Ex4.sce create mode 100755 497/CH16/EX16.5/Chap16_Ex5.sce (limited to '497/CH16') diff --git a/497/CH16/EX16.1/Chap16_Ex1.sce b/497/CH16/EX16.1/Chap16_Ex1.sce new file mode 100755 index 000000000..95a99c61c --- /dev/null +++ b/497/CH16/EX16.1/Chap16_Ex1.sce @@ -0,0 +1,41 @@ +//Kunii D., Levenspiel O., 1991. Fluidization Engineering(II Edition). Butterworth-Heinemann, MA, pp 491 + +//Chapter-16, Example 1, Page 404 +//Title: Single-Stage Limestone Calciner +//========================================================================================================== + +clear +clc + +//INPUT +T=1000;//Operating temperature of calciner in degree celcius +deltaHr=1795;//Heat of reaction in kJ/kg +M1=0.1;//Molecular weight of Calcium carbonate in kg/mol +M2=0.056;//Molecular weight of CaO in kg/mol +M3=0.044;//Molecular weight of Carbon dioxide in kg/mol +M4=0.029;//Molecular weight of Air in kg/mol +M5=0.029;//Molecular weight of Combustion gas in kg/mol +Cp1=1.13;//Specific heat of Calcium carbonate in kJ/kg K +Cp2=0.88;//Specific heat of CaO in kJ/kg K +Cp3=1.13;//Specific heat of Carbon dioxide in kJ/kg K +Cp4=1.00;//Specific heat of Air in kJ/kg K +Cp5=1.13;//Specific heat of Calcium carbonate in kJ/kg K +Tf=20;//Temperature of feed in degree celcius +ma=15;//Air required per kg of fuel in kg +Hc=41800;//Net combustion heat of fuel in kJ/kg +Tpi=20;//Initial temperature of solids in degree C +Tgi=1000;//Initial temperature of gas in degree C + +//CALCULATION +mc=1;//Based on 1 kg of Calcium carbonate +B=(1/(Hc-(ma+mc)*Cp5*(T-Tpi)))*[M3*Cp3*(T-Tf)+M2*Cp2*(T-Tf)+deltaHr]//Fuel consumption(kg fuel/kg calcium carbonate) +B1=B*M3/M2;//Fuel consumption(kg fuel/kg Cao) +H=Hc*B1;//Heat required for calcination +eta=deltaHr/(B*Hc);//Thermal efficiency + +//OUTPUT +mprintf('\nFuel consumption:%f kg fuel/kg Cao',B1); +mprintf('\nHeat requirement for calcination:%f kJ/kg Cao',H); +mprintf('\nThermal efficiency:%f percentage',eta*100); + +//====================================END OF PROGRAM ====================================================== \ No newline at end of file diff --git a/497/CH16/EX16.2/Chap16_Ex2.sce b/497/CH16/EX16.2/Chap16_Ex2.sce new file mode 100755 index 000000000..c8a5c8864 --- /dev/null +++ b/497/CH16/EX16.2/Chap16_Ex2.sce @@ -0,0 +1,78 @@ +//Kunii D., Levenspiel O., 1991. Fluidization Engineering(II Edition). Butterworth-Heinemann, MA, pp 491 + +//Chapter-16, Example 2, Page 405 +//Title: Multistage Limestone Calciner +//========================================================================================================== + +clear +clc + +//INPUT +F=400;//Feed rate of Calcium carbonate in tons/day +T=1000;//Operating temperature of calciner in degree celcius +deltaHr=1795;//Heat of reaction in kJ/kg +M1=0.1;//Molecular weight of Calcium carbonate in kg/mol +M2=0.056;//Molecular weight of CaO in kg/mol +M3=0.044;//Molecular weight of Carbon dioxide in kg/mol +M4=0.029;//Molecular weight of Air in kg/mol +M5=0.029;//Molecular weight of Combustion gas in kg/mol +Cp1=1.13;//Specific heat of Calcium carbonate in kJ/kg K +Cp2=0.88;//Specific heat of CaO in kJ/kg K +Cp3=1.13;//Specific heat of Carbon dioxide in kJ/kg K +Cp4=1.00;//Specific heat of Air in kJ/kg K +Cp5=1.17;//Specific heat of Combustion gas in kJ/kg K +Tf=20;//Temperature of feed in degree celcius +ma=15;//Air required per kg of fuel in kg +uo=0.8;//Superficial gas velocity in m/s +Hc=41800;//Net combustion heat of fuel in kJ/kg +Tpi=20;//Initial temperature of solids in degree C +Tgi=1000;//Initial temperature of gas in degree C +rhoa=1.293;//Density of air in kg/m^3 +pi=3.14; + +//CALCULATION +mc=1;//Based on 1 kg of Calcium carbonate +Bguess=2;//Guess value of B +function[fn]=solver_func(B)//Function defined for solving the system + phi=((ma+mc)*Cp5*B+(M3*Cp3))/Cp1; + T3=(Tpi+(phi+phi^2+phi^3)*Tgi)/(1+phi+phi^2+phi^3); + phiplus=30.6*B + Tr=(T+Tpi*phiplus)/(1+phiplus); + fn=Hc*B+Cp3*(T3-Tpi)+ma*B*Cp4*(Tr-20)-(ma+mc)*Cp5*(T-Tpi)-M3*Cp3*(T-Tpi)-M2*Cp2*(T-Tpi)-deltaHr; + //fn=(1/20800)*(2470-T3-13.34*(Tr-20)); +endfunction +[B]=fsolve(Bguess,solver_func,1E-6);//Using inbuilt function fsolve for solving Eqn.(23) for tou +phi=((ma+mc)*Cp5*B+(M3*Cp3))/Cp1; +//Temperature of various stages +T1=(Tpi+(phi)*Tgi)/(1+phi); +T2=(Tpi+(phi+phi^2)*Tgi)/(1+phi+phi^2); +T3=(Tpi+(phi+phi^2+phi^3)*Tgi)/(1+phi+phi^2+phi^3); +phiplus=30.6*B +Tr=(T+Tpi*phiplus)/(1+phiplus); +eta=deltaHr/(B*Hc);//Thermal efficiency +H=B*Hc/M2;//Heat requirement +//For lower heat recovery section +Ql=(F*10^3/(24*3600))*B*ma/(rhoa*(273/(Tr+273)));//Volumetric flow rate of gas in the lower heat recovery section +dtl=sqrt(4/pi*Ql/uo);//Diameter of lower bed +//For calcination section +Qc=(F*10^3/(24*3600))*B*ma/(rhoa*(273/(T+273)));//Volumetric flow rate of gas in the calcination section +dtc=sqrt(4/pi*Qc/uo);//Diameter of calcination section +//For I stage +Q1=(F*10^3/(24*3600))*B*ma/(rhoa*(273/(T1+273)));//Volumetric flow rate of gas in the I stage +dt1=sqrt(4/pi*Q1/uo);//Diameter of I stage +//For II stage +Q2=(F*10^3/(24*3600))*B*ma/(rhoa*(273/(T2+273)));//Volumetric flow rate of gas in the II stage +dt2=sqrt(4/pi*Q2/uo);//Diameter of II stage +//For III stage +Q3=(F*10^3/(24*3600))*B*ma/(rhoa*(273/(T3+273)));//Volumetric flow rate of gas in the III stage +dt3=sqrt(4/pi*Q3/uo);//Diameter of III stage + +//OUTPUT +printf('\nDiameter of lower bed:%fm',dtl); +printf('\nDiameter of calcination section:%fm',dtc); +printf('\nBed no.\t\t1\t2\t\t3'); +printf('\nDiameter(m)%f\t%f\t%f',dt1,dt2,dt3); + +//The value of diameter of each section is largely deviating from the values in the textbook. This is because the fuel consumption B have not been included in the energy balance equation. And the value of molecular weight is wrong by one decimal point. + +//====================================END OF PROGRAM ====================================================== \ No newline at end of file diff --git a/497/CH16/EX16.3/Chap16_Ex3.sce b/497/CH16/EX16.3/Chap16_Ex3.sce new file mode 100755 index 000000000..402fe4068 --- /dev/null +++ b/497/CH16/EX16.3/Chap16_Ex3.sce @@ -0,0 +1,29 @@ +//Kunii D., Levenspiel O., 1991. Fluidization Engineering(II Edition). Butterworth-Heinemann, MA, pp 491 + +//Chapter-16, Example 3, Page 413 +//Title: Multistage Adsorber +//========================================================================================================== + +clear +clc + +//INPUT +T=20;//Temeprature in degree C +M=0.018;//Molecular weight of water in kg/mol +Q=10;//Flow rate of dry air in m^3/s +R=82.06E-6;//Universal gas constant +pi=0.0001;//Initial moisture content in atm +pj=0.01;//Final moisture content in atm + +//CALCULATION +a=Q*(273+T)/273;//Term At*uo +b=a*M/(R*(T+273));//Term C*At*uo +//The value of slope can be found only by graphical mehtod. Hence it has been taken directly from the book(Page no.414,Fig.E3) +m=10.2; +Fo=b/m;//Flow rate of solids +Q3=(b/Fo)*(pj-pi);//Moisture content of leaving solids + +//OUTPUT +printf('\nMoisture content of leaving solids:%f kg H2O/kg dry solids',Q3); + +//====================================END OF PROGRAM ====================================================== \ No newline at end of file diff --git a/497/CH16/EX16.4/Chap16_Ex4.sce b/497/CH16/EX16.4/Chap16_Ex4.sce new file mode 100755 index 000000000..ff285781b --- /dev/null +++ b/497/CH16/EX16.4/Chap16_Ex4.sce @@ -0,0 +1,62 @@ +//Kunii D., Levenspiel O., 1991. Fluidization Engineering(II Edition). Butterworth-Heinemann, MA, pp 491 + +//Chapter-16, Example 4, Page 422 +//Title: Dryer Kinetics and Scale-up +//========================================================================================================== + +clear +clc + +//INPUT +Qfi=0.20;//Initial moisture fraction +Qfbar=0.04;//Average final moisture fraction +rhos=2000;//Density of solid in kg/m^3 +Cps=0.84;//Specific heat of solids in kJ/kg K +Fo=7.6E-4;//Flow rate of solids in kg/m^3 +Tsi=20;//Inital temperature of solids in degree C +rhog=1;//Density of gas in kg/m^3 +Cpg=1;//Specific heat of gas in kJ/kg K +uo=0.3;//Superficial gas velocity in m/s +Tgi=200;//Initial temperature of gas in degee C +L=2370;//Enthalpy of liquid in kJ/kg +Cpl=4.2;//Specific heat of liquid in kJ/kg K +dt=0.1;//Diameter of reactor in m +Lm=0.1;//Length of fixed bed in m +ephsilonm=0.45;//Void fraction of fixed bed +pi=3.14; +Fo1=1;//Feed rate for commercial-scale reactor in kg/s + +//CALCULATION +//(a)Bed temperature +Teguess=50;//Guess value of Te +function[fn]=solver_func(Te)//Function defined for solving the system + fn=(pi/4)*dt^2*uo*rhog*Cpg*(Tgi-Te)-Fo*(Qfi-Qfbar)*[L+Cpl*(Te-Tsi)]-Fo*Cps*(Te-Tsi); +endfunction +[Te]=fsolve(Teguess,solver_func,1E-6);//Using inbuilt function fsolve for solving Eqn.(53) for Te + +//(b)Drying time for a particle +xguess=2;//Guess value of x, ie term tou/tbar +function[fn]=solver_func1(x)//Function defined for solving the system + fn=1-(Qfbar/Qfi)-(1-exp(-x))/x; +endfunction +[x]=fsolve(xguess,solver_func1,1E-6);//Using inbuilt function fsolve for solving Eqn.(61) for x +W=(pi/4)*dt^2*Lm*(1-ephsilonm)*rhos;//Weight of soilds in bed +tbar=W/Fo;//Mean residence time of solids from Eqn.(59) +tou=tbar*x;//Time for complete drying of a particle + +//(c)Commercial-scale dryer +W1=Fo1*tbar; +Atguess=5;//Guess value of area +function[fn]=solver_func3(At)//Function defined for solving the system + fn=At*uo*rhog*Cpg*(Tgi-Te)-Fo1*(Qfi-Qfbar)*[L+Cpl*(Te-Tsi)]-Fo1*Cps*(Te-Tsi); +endfunction +[At]=fsolve(Atguess,solver_func3,1E-6);//Using inbuilt function fsolve for solving Eqn.(53) for At +dt1=sqrt(4/pi*At);//Diameter of commercial-scale dryer +Q1=At*uo*rhog;//Flow rate necessary for the operation + +//OUTPUT +printf('\nBed temperature:%f degree C',Te); +printf('\nTime for complete drying of particle:%fs',tou); +printf('\nFlow rate of gas necessary for Commercial-scale dryer:%fkg/s',Q1); + +//====================================END OF PROGRAM ====================================================== \ No newline at end of file diff --git a/497/CH16/EX16.5/Chap16_Ex5.sce b/497/CH16/EX16.5/Chap16_Ex5.sce new file mode 100755 index 000000000..19b0b730b --- /dev/null +++ b/497/CH16/EX16.5/Chap16_Ex5.sce @@ -0,0 +1,82 @@ +//Kunii D., Levenspiel O., 1991. Fluidization Engineering(II Edition). Butterworth-Heinemann, MA, pp 491 + +//Chapter-16, Example 5, Page 425 +//Title: Solvent Recovery from Polymer Particles +//========================================================================================================== + +clear +clc + +//INPUT +rhos=1600;//Density of solid in kg/m^3 +Cps=1.25;//Specific heat of solids in kJ/kg K +Fo=0.5;//Flow rate of solids in kg/s +Tsi=20;//Inital temperature of solids in degree C +Qwi=1;//Initial moisture fraction in water +Qwf=0.2;//Final moisture fraction in water +Qhi=1.1;//Initial moisture fraction in heptane +Qhf=0.1;//Final moisture fraction in heptane +Tgi=240;//Initial temperature of gas in degee C +Te=110;//Bed temperature in degree C +ephsilonm=0.45;//Void fraction of fixed bed +ephsilonf=0.75;//Void fraction of fluidized bed +uo=0.6;//Superficial gas velocity in m/s +di=0.08;//Diameter of tubes in m +li=0.2;//Pitch for square arrangement +hw=400;//Heat transfer coefficient in W/m^2 K +Tc=238;//Temperature at which steam condenses in degree C +//Specific heats in kJ/kg K +Cwl=4.18;//Water liquid +Cwv=1.92;//Water vapor +Chl=2.05;//Heptane liquid +Chv=1.67;//Heptane vapor +//Latent heat of vaporization in kJ/kg +Lw=2260;//Water +Lh=326;//Heptane +//Density of vapor in kg/m^3 at operating conditions +rhow=0.56;//Water +rhoh=3.1;//Heptane +Lf=1.5;//Length of fixed bed in m +t=140;//Half-life of heptane in s +L=1.5;//Length of tubes in heat exchanger +pi=3.14; + +//CALCULATION +//(a) Dryer without Internals +xw=(Qwi-Qwf)/(Qhi-Qhf);//Water-heptane weight ratio +xv=((Qwi-Qwf)/18)/((Qhi-Qhf)/100);//Water-heptane volume ratio +T=(Qwi-Qwf)/18+(Qhi-Qhf)/100;//Total volume +rhogbar=((Qwi-Qwf)/18)/T*rhow+((Qhi-Qhf)/100)/T*rhoh;//Mean density of the vapor mixture +Cpgbar=(((Qwi-Qwf)/18)/T)*rhow*Cwv+(((Qhi-Qhf)/100)/T)*rhoh*Cwv;//Mean specific heat of vapor mixture +//Volumetric flow of recycle gas to the dryer in m^3/s from Eqn.(53) +x=(Cpgbar*(Tgi-Te))^-1*[Fo*(Qwi-Qwf)*[Lw+Cwl*(Te-Tsi)]+Fo*(Qhi-Qhf)*[Lh+Chl*(Te-Tsi)]+Fo*(Cps*(Te-Tsi))]; +r=Fo*[(Qwi-Qwf)/rhow+(Qhi-Qhf)/rhoh};//Rate of formation of vapor in bed +uo1=uo*(x/(x+r));//Superficial velocity just above the distributor +At=x/uo1;//Cross-sectional area of bed +dt=sqrt(4/pi*At);//Diameter of bed +B=-log(Qwf/Qwi)/t;//Bed height from Eqn.(63) +tbar=((Qhi/Qhf)-1)/B;//Mean residence time of solids +W=Fo*tbar;//Weight of bed +Lm=W/(At*(1-ephsilonm)*rhos);//Static bed height +Lf=(Lm*(1-ephsilonm))/(1-ephsilonf);//Height of fluidized bed + +//(b) Dryer with internal heaters +f=1/8;//Flow rate is 1/8th the flow rate of recirculation gas as in part (a) +x1=f*x;//Volumetric flow of recycle gas to the dryer in m^3/s from Eqn.(53) +uo2=uo*(x1/(x1+r));//Superficial velocity just above the distributor +Abed=x1/uo2;//Cross-sectional area of bed +q=[Fo*(Qwi-Qwf)*[Lw+Cwl*(Te-Tsi)]+Fo*(Qhi-Qhf)*[Lh+Chl*(Te-Tsi)]+Fo*(Cps*(Te-Tsi))]-Abed*uo2*Cpgbar*(Tgi-Te);//Heat to be added from energy balance of Eqn.(53) +Aw=q*10^3/(hw*(Tc-Te));//Total surface area of heat exchanger tubes +Lt=Aw/(pi*di);//Total length of tubes +Nt=Lt/L;//Total number of tubes +Atubes=Nt*(pi/4*di^2);//Total cross-sectional area of tubes +Atotal=Abed+Atubes;//Total cross-sectional area of tube filled dryer +d=sqrt(Atotal*pi/4);//Diameter of vessel +li=sqrt(Atotal/Nt);//Pitch for square array of tubes + +//OUTPUT +printf('\n\t\t\tBed diameter(m)\tRecycle vapor flow(m^3/s)'); +printf('\nWithout internal heater\t%f\t%f',dt,x); +printf('\nWith heating tubes\t%f\t%f',d,x1); + +//====================================END OF PROGRAM ====================================================== \ No newline at end of file -- cgit