From b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b Mon Sep 17 00:00:00 2001 From: priyanka Date: Wed, 24 Jun 2015 15:03:17 +0530 Subject: initial commit / add all books --- 497/CH14/EX14.2/Chap14_Ex2.sce | 72 ++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 72 insertions(+) create mode 100755 497/CH14/EX14.2/Chap14_Ex2.sce (limited to '497/CH14/EX14.2/Chap14_Ex2.sce') diff --git a/497/CH14/EX14.2/Chap14_Ex2.sce b/497/CH14/EX14.2/Chap14_Ex2.sce new file mode 100755 index 000000000..a1cf0488c --- /dev/null +++ b/497/CH14/EX14.2/Chap14_Ex2.sce @@ -0,0 +1,72 @@ +//Kunii D., Levenspiel O., 1991. Fluidization Engineering(II Edition). Butterworth-Heinemann, MA, pp 491 + +//Chapter-14, Example 2, Page 344 +//Title: Flow with Elutriation and Change in Density of Solids +//========================================================================================================== + +clear +clc + +//INPUT +dt=4;//Diameter of reactor in m +ephsilonm=0.4;//Void fraction of static bed +rhos=2500;//Density of solid in the bed in kg/m^3 +Lm=1.2;//Height of static bed in m +Fo=3000;//Feed rate in kg/hr +beta1=1.2;//Increase in density of solids +dp=[3;4;5;6;7;8;9;10;11;12;3;14;16;18;20;22;24;26;28;30]*10^-2;//Size of particles in mm +po=[0;0.3;0.8;1.3;1.9;2.6;3.5;4.4;5.7;6.7;7.5;7.8;7.5;6.3;5.0;3.6;2.4;1.3;0.5;0];//Size distribution of solids in mm^-1 +k=[0;10;9.75;9.5;8.75;7.5;6.0;4.38;2.62;1.20;0.325;0;0;0;0;0;0;0;0;0]*10^-4;//Elutriation constant in s^-1 +pi=3.14; + +//CALCULATION +W=(pi/4*dt^2)*Lm*(1-ephsilonm)*rhos;//Weight of solids in bed +n=length(dp); +i=1; +F1guess=1000;//Guess value for F1 +F1c=2510:10:2700; +while i<=n + function[fn]=solver_func(F1)//Function defined for solving the system + if k(i)==0 then x(i)=0; break + else x(i)=(po(i)/(W*k(i)/F1))*log(1+(W*k(i)/F1)); + end + fn=F1/(Lm*Fo)-x(i); + endfunction + [F1(i)]=fsolve(F1guess,solver_func,1E-6);//Using inbuilt function fsolve for solving Eqn.(20) for F1 + c(i)=F1c(i)/(Lm*Fo); + if F1(i)==0 then a(i)=0; + else a(i)=(po(i)/(W*k(i)/F1(i)))*log(1+(W*k(i)/F1(i))); + end + i=i+1; +end +plot(F1,a,F1,c); +xtitle('F1 vs a,c','F1','a,c'); +F1n=2500;//The point were both the curves meet +F2=beta1*Fo-F1n;//Flow rate of the second leaving stream +j=1; +m=length(dp); +while j<=m + p1(j)=(1/F1n)*((Fo*po(j))/(1+(W/F1n)*k(j)));//Size distribution of stream 1 in mm^-1 from Eqn.(16) + p2(j)=k(j)*W*p1(j)/F2;//Size distribution of stream 2 in mm^-1 from Eqn.(7) + if p1(j)==0 & p2(j)==0 then tbar(j)=0; + else if p1(j)==0 then tbar(j)=(W*p1(j))/(F2*p2(j)); + else if p2(j)==0 then tbar(j)=(W*p1(j))/(F1n*p1(j)); + else tbar(j)=(W*p1(j))/(F1n*p1(j)+F2*p2(j));//Average time in hr from Eqn.(11) + end + end + end + j=j+1; +end + +//OUTPUT +printf('\nFlow rate of stream 1:%fkg/hr',F1n); +printf('\nFlow rate of stream 2:%fkg/hr',F2); +j=1; +mprintf('\ntbar(hr)'); +while j<=m + mprintf('\n%f',tbar(j)); + j=j+1; +end + +//====================================END OF PROGRAM ====================================================== +//DISCLAIMER: The value obtained for tbar is deviating highly form the one given in textbook. However, the value obtained by manual calculation is close to the ones obtained from the program. \ No newline at end of file -- cgit