From b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b Mon Sep 17 00:00:00 2001 From: priyanka Date: Wed, 24 Jun 2015 15:03:17 +0530 Subject: initial commit / add all books --- 401/CH14/EX14.1/Example14_1.sce | 23 +++++++++++++++++++++++ 401/CH14/EX14.2/Example14_2.sce | 25 +++++++++++++++++++++++++ 401/CH14/EX14.3/Example14_3.sce | 17 +++++++++++++++++ 401/CH14/EX14.4/Example14_4.sce | 23 +++++++++++++++++++++++ 401/CH14/EX14.5/Example14_5.sce | 16 ++++++++++++++++ 401/CH14/EX14.6/Example14_6.sce | 17 +++++++++++++++++ 401/CH14/EX14.7/Example14_7.sce | 26 ++++++++++++++++++++++++++ 401/CH14/EX14.8/Example14_8.sce | 20 ++++++++++++++++++++ 8 files changed, 167 insertions(+) create mode 100755 401/CH14/EX14.1/Example14_1.sce create mode 100755 401/CH14/EX14.2/Example14_2.sce create mode 100755 401/CH14/EX14.3/Example14_3.sce create mode 100755 401/CH14/EX14.4/Example14_4.sce create mode 100755 401/CH14/EX14.5/Example14_5.sce create mode 100755 401/CH14/EX14.6/Example14_6.sce create mode 100755 401/CH14/EX14.7/Example14_7.sce create mode 100755 401/CH14/EX14.8/Example14_8.sce (limited to '401/CH14') diff --git a/401/CH14/EX14.1/Example14_1.sce b/401/CH14/EX14.1/Example14_1.sce new file mode 100755 index 000000000..b0a1e376f --- /dev/null +++ b/401/CH14/EX14.1/Example14_1.sce @@ -0,0 +1,23 @@ +//Example 14.1 +//Program to determine the attenuation per kilometer for the fiber +//and estimate the accuracy of the result + +clear; +clc ; +close ; + +//Given data +L1=2*10^3; //metres - INITIAL LENGTH +L2=2; //metres - FINAL LENGTH +V1=2.1; //volts - INITIAL OUTPUT VOLTAGE +V2=10.7; //volts - FINAL OUTPUT VOLTAGE + +//Attenuation per Kilometer +alpha_dB=10/(L1-L2)*log10(V2/V1); + +//Uncertainity in measured attenuation +Uncertainity=0.2/(L1-L2); + +//Displaying the Results in Command Window +printf("\n\n\t Attenuation is %0.1f dB/km.",alpha_dB*10^3); +printf("\n\n\t Uncertainity in measured attenuation is +-%0.1f dB.",Uncertainity*10^3); \ No newline at end of file diff --git a/401/CH14/EX14.2/Example14_2.sce b/401/CH14/EX14.2/Example14_2.sce new file mode 100755 index 000000000..485bd8fe0 --- /dev/null +++ b/401/CH14/EX14.2/Example14_2.sce @@ -0,0 +1,25 @@ +//Example 14.2 +//Program to determine the absorption loss for the fiber under test + +clear; +clc ; +close ; + +//Given data +t1=10; //s - INITIAL TIME +t2=100; //s - FINAL TIME +Tinf_minus_Tt1=0.525;//From Figure 14.6 +Tinf_minus_Tt2=0.021;//From Figure 14.6 +C=1.64*10^4; //J/degree C - THERMAL CAPACITY PER KILOMETER +Tinf=4.3*10^(-4); //degree C - MAXIMUM THERMAL TEMPERATURE RISE +Popt=98*10^(-3); //Watt - OPTICAL POWER + +//Time constant for the calorimeter +tc=(t2-t1)/(log(Tinf_minus_Tt1)-log(Tinf_minus_Tt2)); + +//Absorption loss of the test fiber +alpha_abs=C*Tinf/(Popt*tc); + +//Displaying the Results in Command Window +printf("\n\n\t Time constant for the calorimeter is %0.1f s.",tc); +printf("\n\n\t Absorption loss of the test fiber is %0.1f dB/km.",alpha_abs); \ No newline at end of file diff --git a/401/CH14/EX14.3/Example14_3.sce b/401/CH14/EX14.3/Example14_3.sce new file mode 100755 index 000000000..8d16525bb --- /dev/null +++ b/401/CH14/EX14.3/Example14_3.sce @@ -0,0 +1,17 @@ +//Example 14.3 +//Program to determine the loss due to scattering for the fiber + +clear; +clc ; +close ; + +//Given data +Vsc=6.14*10^(-9); //V - OPTICAL OUTPUT POWER +Vopt=153.38*10^(-6); //V - OPTICAL POWER WITHOUT SCATTERING +l=2.92; //cm - LENGTH OF THE FIBER + +//Loss due to scattering for the fiber +alpha_sc=4.343*10^5/l*Vsc/Vopt; + +//Displaying the Result in Command Window +printf("\n\n\t Loss due to scattering for the fiber is %0.1f dB/km.",alpha_sc); \ No newline at end of file diff --git a/401/CH14/EX14.4/Example14_4.sce b/401/CH14/EX14.4/Example14_4.sce new file mode 100755 index 000000000..38cac7c7b --- /dev/null +++ b/401/CH14/EX14.4/Example14_4.sce @@ -0,0 +1,23 @@ +//Example 14.4 +//Program to calculate: +//(a)3 dB Pulse Broadening in ns/km +//(b)Fiber Bandwidth-Length product + +clear; +clc ; +close ; + +//Given data +tau_o=12.6; //ns - 3 dB width of Output Pulse +tau_i=0.3; //ns - 3 dB width of Input Pulse +L=1.2; //km - LENGTH + +//(a)3 dB Pulse Broadening in ns/km +tau=sqrt(tau_o^2-tau_i^2)/L; + +//(b)Fiber Bandwidth-Length product +Bopt=0.44/tau; + +//Displaying the Results in Command Window +printf("\n\n\t (a)3 dB Pulse Broadening is %0.1f ns/km.",tau); +printf("\n\n\t (b)Fiber Bandwidth-Length product is %0.1f MHz km.",Bopt*10^3); \ No newline at end of file diff --git a/401/CH14/EX14.5/Example14_5.sce b/401/CH14/EX14.5/Example14_5.sce new file mode 100755 index 000000000..2e1552d91 --- /dev/null +++ b/401/CH14/EX14.5/Example14_5.sce @@ -0,0 +1,16 @@ +//Example 14.5 +//Program to calculate the Numerical Aperture(NA) of the fiber + +clear; +clc ; +close ; + +//Given data +D=10; //cm - SCREEN POSITION +A=6.2; //cm - OUTPUT PATTERN SIZE + +// Numerical Aperture(NA) of the fiber +NA=A/sqrt(A^2+4*D^2); + +//Displaying The Results in Command Window +printf("\n\n\t The Numerical Aperture(NA) of the fiber is %0.2f .",NA); \ No newline at end of file diff --git a/401/CH14/EX14.6/Example14_6.sce b/401/CH14/EX14.6/Example14_6.sce new file mode 100755 index 000000000..65eb2a02c --- /dev/null +++ b/401/CH14/EX14.6/Example14_6.sce @@ -0,0 +1,17 @@ +//Example 14.6 +//Program to determine outer diameter of the optical fiber in micrometer + +clear; +clc ; +close ; + +//Given data +l=0.1; //m - MIRROR POSITION +d_PHI_by_dt=4; //rad/s - ANGULAR VELOCITY +We=300*10^(-6); //us - WIDTH OF SHADOW PULSE + +//Outer diameter of the optical fiber +d0=We*l*d_PHI_by_dt; + +//Displaying the Result in Command Window +printf("\n\n\t The Outer diameter of the optical fiber is %1.0f um.",d0*10^6); \ No newline at end of file diff --git a/401/CH14/EX14.7/Example14_7.sce b/401/CH14/EX14.7/Example14_7.sce new file mode 100755 index 000000000..684d249e7 --- /dev/null +++ b/401/CH14/EX14.7/Example14_7.sce @@ -0,0 +1,26 @@ +//Example 14.7 +//Program to: +//(a) Convert optical signal powers to dBm +//(b) Convert optical signal powers to dBu + +clear; +clc ; +close ; + +//(a)Convert optical signal powers to dBm +Po=5*10^(-3); //Watt - GIVEN OPTICAL POWER +dBm=10*log10(Po/1*10^3); +printf("\n\n\t (a)The %1.0f mW of optical power is equivalent to %0.2f dBm.",Po/10^(-3), dBm); + +Po=20*10^(-6); //Watt - GIVEN OPTICAL POWER +dBm=10*log10(Po/1*10^3); +printf("\n\n\t The %1.0f uW of optical power is equivalent to %0.2f dBm.",Po/10^(-6), dBm); + +//(b)Convert optical signal powers to dBu +Po=0.03*10^(-3); //Watt - GIVEN OPTICAL POWER +dBm=10*log10(Po/1*10^6); +printf("\n\n\t (b)The %0.2f mW of optical power is equivalent to %0.2f dBu.",Po/10^(-3), dBm); + +Po=800*10^(-9); //Watt - GIVEN OPTICAL POWER +dBm=10*log10(Po/1*10^6); +printf("\n\n\t The %1.0f nW of optical power is equivalent to %0.2f dBu.",Po/10^(-9), dBm); diff --git a/401/CH14/EX14.8/Example14_8.sce b/401/CH14/EX14.8/Example14_8.sce new file mode 100755 index 000000000..0de638921 --- /dev/null +++ b/401/CH14/EX14.8/Example14_8.sce @@ -0,0 +1,20 @@ +//Example 14.8 +//Program to calculate the ratio in dB of back scattered optical +//power to the forward optical power at the fiber input + +clear; +clc ; +close ; + +//Given data +NA=0.2; //NUMERICAL APERTURE +gamma_r=0.7*10^-3; //per m - RAYLEIGH SCATTERING COEFFICIENT +Wo=50*10^(-9); //s - PULSE DURATION +c=2.998*10^8; //m/s - VELOCITY OF LIGHT IN VACCUM +n1=1.5; //CORE REFRACTIVE INDEX + +//Calculated Ratio Pra(0)/Pi +Pra0_by_Pi=0.5*NA^2*gamma_r*Wo*c/(4*n1^3); + +//Displaying the Result in command window +printf("\n\n\t Pra(0)/Pi = %0.1f dB.",10*log10(Pra0_by_Pi)); -- cgit