From 7f60ea012dd2524dae921a2a35adbf7ef21f2bb6 Mon Sep 17 00:00:00 2001 From: prashantsinalkar Date: Tue, 10 Oct 2017 12:27:19 +0530 Subject: initial commit / add all books --- 3831/CH5/EX5.1/Ex5_1.sce | 35 +++++++++++++++++++++++++++++++++++ 3831/CH5/EX5.2/Ex5_2.sce | 15 +++++++++++++++ 3831/CH5/EX5.3/Ex5_3.sce | 14 ++++++++++++++ 3831/CH5/EX5.4/Ex5_4.sce | 18 ++++++++++++++++++ 3831/CH5/EX5.5/Ex5_5.sce | 16 ++++++++++++++++ 3831/CH5/EX5.6/Ex5_6.sce | 37 +++++++++++++++++++++++++++++++++++++ 3831/CH5/EX5.7/Ex5_7.sce | 20 ++++++++++++++++++++ 3831/CH5/EX5.8/Ex5_8.sce | 18 ++++++++++++++++++ 8 files changed, 173 insertions(+) create mode 100644 3831/CH5/EX5.1/Ex5_1.sce create mode 100644 3831/CH5/EX5.2/Ex5_2.sce create mode 100644 3831/CH5/EX5.3/Ex5_3.sce create mode 100644 3831/CH5/EX5.4/Ex5_4.sce create mode 100644 3831/CH5/EX5.5/Ex5_5.sce create mode 100644 3831/CH5/EX5.6/Ex5_6.sce create mode 100644 3831/CH5/EX5.7/Ex5_7.sce create mode 100644 3831/CH5/EX5.8/Ex5_8.sce (limited to '3831/CH5') diff --git a/3831/CH5/EX5.1/Ex5_1.sce b/3831/CH5/EX5.1/Ex5_1.sce new file mode 100644 index 000000000..7cda0334c --- /dev/null +++ b/3831/CH5/EX5.1/Ex5_1.sce @@ -0,0 +1,35 @@ +// Example 5_1 +clc;funcprot(0); +// Given data +V=1.00;// m^3 +m=2.00;// kg +T_1=20.0;// °C +T_2=95.0;// °C + +// Calculation +v_1=V/m;// m^3/kg +v_2=v_1;// m^3/kg +// Step 7 +// From Table C.1b of Thermodynamic Tables to accompany Modern Engineering Thermodynamics, we find that +// At 20.0°C +v_f1=0.001002;// m^3/kg +v_g1=57.79;// m^3/kg +v_fg1=v_g1-v_f1;// m^3/kg +u_f1=83.9;// kJ/kg +u_g1=2402.9;// kJ/kg +u_fg1=u_g1-u_f1;// kJ/kg +// At 95.0°C +v_f2=0.00104;// m^3/kg +v_g2=1.982;// m^3/kg +v_fg2=v_g2-v_f2;// m^3/kg +u_f2=397.9;// kJ/kg +u_g2=2500.6;// kJ/kg +u_fg2=u_g2-u_f2;// kJ/kg +x_1=(v_1-v_f1)/v_fg1;// The quality in the container when the contents are at 20.0°C +x_1p=x_1*100;// % +x_2=(v_2-v_f2)/v_fg2;// The quality in the container when the contents are at 95.0°C. +x_2p=x_2*100;// % +u_1=u_f1+(x_1*u_fg1);// kJ/kg +u_2=u_f2+(x_2*u_fg2);// kJ/kg +Q_12=m*(u_2-u_1);// kJ +printf('\n(a)The quality in the container when the contents are at 20.0°C,x_1=%0.3f percentage \n(b)The quality in the container when the contents are at 95.0°C,x_2=%2.1f percentage \n(c)The heat transport of energy required to raise the temperature of the contents from 20.0 to 95.0°C,Q_12=%4.0f kJ/kg',x_1p,x_2p,Q_12); diff --git a/3831/CH5/EX5.2/Ex5_2.sce b/3831/CH5/EX5.2/Ex5_2.sce new file mode 100644 index 000000000..e441e2a80 --- /dev/null +++ b/3831/CH5/EX5.2/Ex5_2.sce @@ -0,0 +1,15 @@ +// Example 5_2 +clc;funcprot(0); +// Given data +W=100;// W + +// Calculation +// (a) +// Since we are assuming a constant bulb temperature in part a, U=constant and +U=0;// W +Q=U-W;// kW +printf("\n(a)The heat transfer rate of an illuminated 100 W incandescent lightbulb in a room,Q=%3.0f W",Q); +// (b) +Q=0; +Udot=W;// W +printf("\n(b)The rate of change of its internal energy,Udot=%3.0f W",Udot); diff --git a/3831/CH5/EX5.3/Ex5_3.sce b/3831/CH5/EX5.3/Ex5_3.sce new file mode 100644 index 000000000..116898d56 --- /dev/null +++ b/3831/CH5/EX5.3/Ex5_3.sce @@ -0,0 +1,14 @@ +// Example 5_3 +clc;funcprot(0); +// Given data +Q_B=950*10^5;// kJ/h +W_p=23.0;// kW +Q_c=-600*10^5;// kJ/h + +// Calculation +Q_net=(Q_B+Q_c);// kJ/h +W_T_net=Q_net/3600;// kJ/h +W_T_net=W_T_net/1000;// MW +W_T_total=(W_T_net*10^3)+W_p;// kW +printf("\nThe net power of the turbine,(W_T)_total=%4.0f kW(round off error)",W_T_total); +// The answer vary due to round off error diff --git a/3831/CH5/EX5.4/Ex5_4.sce b/3831/CH5/EX5.4/Ex5_4.sce new file mode 100644 index 000000000..dd031c017 --- /dev/null +++ b/3831/CH5/EX5.4/Ex5_4.sce @@ -0,0 +1,18 @@ +// Example 5_4 +clc;funcprot(0); +// Given data +W=0.250;// hp +V=1.00;// quart of water +p_1=14.7;// psia +T_1=60.0;// °F +p_2=p_1;// psia +t=10;// min +c=1.00;// Btu/(lbm.R) + +// Calculation +V=V*(1/4)*0.13368;// ft^3 +v=0.01603;// ft^3/lbm +m=V/v;// lbm +Q_12bymc=0; +T_2=T_1+Q_12bymc-((-W*t*(1/60)*(2545))/(m*c));// °F +printf('\nThe temperature of the water when the machine is turned off,T_2=%3.0f°F',T_2) diff --git a/3831/CH5/EX5.5/Ex5_5.sce b/3831/CH5/EX5.5/Ex5_5.sce new file mode 100644 index 000000000..02aa4388a --- /dev/null +++ b/3831/CH5/EX5.5/Ex5_5.sce @@ -0,0 +1,16 @@ +// Example 5_5 +clc;funcprot(0); +// Given data +V_2=0.0400;// m^3 +T_1=20.0;// °C +p_1=0.0100;// MPa +Q_12=0.100;// kJ +V_1=0.0100;// m^3 +R=0.208;// kJ/kg.K +c_v=0.315;// kJ/kg.K + +// Calculation +m=((p_1*10^3)*V_1)/(R*(T_1+273.15));// kg +T_2=T_1+(Q_12/(m*c_v));// K +p_2=(m*R*(T_2+273.15))/V_2;// kPa +printf('\nThe pressure and temperature inside the box after the balloon bursts p_2=%1.2f kPa and T_2=%3.0f°C',p_2,T_2); diff --git a/3831/CH5/EX5.6/Ex5_6.sce b/3831/CH5/EX5.6/Ex5_6.sce new file mode 100644 index 000000000..8aff52e26 --- /dev/null +++ b/3831/CH5/EX5.6/Ex5_6.sce @@ -0,0 +1,37 @@ +// Example 5_6 +clc;funcprot(0); +// Given data +// State 1 +m=0.100;// lbm +p_1=100;// psia +T_1=180;// °F +// State 2 +p_2=30.0;// psia +T_2=120;// °F +// State 3 +p_3=p_2;// psia + +// Calculation +// (a) +// From Table C.7e of Thermodynamic Tables to accompany Modern Engineering Thermodynamics, we find that at p1 = 100 psia and T1 = 180°F, +v_1=0.6210;// ft^3/lbm +u_1=125.99;// Btu/lbm +// At p2= 30 psia and T2 = 120°F, +v_2=1.966;// ft^3/lbm +u_2=115.47;// Btu/lbm +W_12=-m*(u_2-u_1);// Btu +// (b) +v_3=v_1/2;// ft^3/lbm +// At p2= 30 psia +v_f3=0.01209;// ft^3/lbm +v_g3=1.5408;// ft^3/lbm +u_f3=16.24;// Btu/lbm +u_g3=95.40;// Btu/lbm +x_3=(v_3-v_f3)/(v_g3-v_f3);// The quality of steam +x_3p=x_3*100;// % +u_3=u_f3+(x_3*(u_g3-u_f3));// Btu/lbm +Q_23=(m*(u_3-u_2))+(m*(p_3*144)*((v_3-v_2)*(1/778.17)));// Btu +// (c) +// From Table C.7b +T_3=15.38;// °F +printf('\n(a)The work transport of energy during the adiabatic expansion,W_12=%1.2f Btu \n(b)The heat transport of energy during the isobaric compression,Q_23=%1.2f Btu \n(c)Since state 3 is saturated (a mixture of liquid and vapor), T3 must be equal to the saturation temperature at 30.0 psia,which, from Table C.7b, is T_3 =%2.2f°F',W_12,Q_23,T_3); diff --git a/3831/CH5/EX5.7/Ex5_7.sce b/3831/CH5/EX5.7/Ex5_7.sce new file mode 100644 index 000000000..cd61fe86a --- /dev/null +++ b/3831/CH5/EX5.7/Ex5_7.sce @@ -0,0 +1,20 @@ +// Example 5_7 +clc;funcprot(0); +// Given data +D=0.100;// m +T_1=200;// °C +p_1=0.140;// MPa +h=3.50;// W/(m^2.K) +T_infinitive=15.0;// °C +c_v=3.123;// kJ/kg.K +R=2.077;// kJ/kg.K +t=5.00;// seconds + +// Calculation +V=(%pi/6)*D^3;// m^3 +A=%pi*D^2;// m^2 +m=((p_1*10^3)*V)/(R*(T_1+273.15));// kg +hAbymc_v=(h*A)/(m*c_v*1000);// s^-1 +T_2=((T_1-T_infinitive)*exp((-(h*A)/(m*c_v*1000))*t))+T_infinitive;// °C +delU=m*c_v*(T_2-T_1);// kJ +printf('\n(a)The final temperature of the helium,T_2=%2.1f°C \n(b)The change in total internal energy of the helium,U_2-U_1=%0.3f kJ',T_2,delU); diff --git a/3831/CH5/EX5.8/Ex5_8.sce b/3831/CH5/EX5.8/Ex5_8.sce new file mode 100644 index 000000000..927fe8697 --- /dev/null +++ b/3831/CH5/EX5.8/Ex5_8.sce @@ -0,0 +1,18 @@ +// Example 5_8 +clc;funcprot(0); +// Given data +P_1=600;// psia +T_1=800;// ºF +V=250;// ft^3 +gamma_TNT=1400;// Btu/lbm + +// Calculation +// From the superheated steam table, Table C.3a of Thermodynamic Tables to accompany Modern Engineering Thermodynamics,we find that at 600. psia and 800.ºF, +u_1=1275.4;// Btu/lbm +v_1=1.190;// ft^3/lbm +u_f2=38.1;// Btu/lbm +u_2=u_f2;// Btu/lbm +gamma=(u_1-u_2)/v_1;// Btu/ft^3 +Ee=gamma*V;// Btu +n=Ee/gamma_TNT;// The number of one-pound sticks of TNT to match the boiler explosion +printf('\n(a)The explosive energy per unit volume of superheated steam,gamma=%4.1f Btu/ft^3 \n(b)%3.0f one-pound sticks of TNT to match the boiler explosion',gamma,n); -- cgit