From b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b Mon Sep 17 00:00:00 2001 From: priyanka Date: Wed, 24 Jun 2015 15:03:17 +0530 Subject: initial commit / add all books --- 380/CH4/EX4.11/4_11.txt | 36 ++++++++++++++++++++++++++++++++++++ 380/CH4/EX4.11/4_11_R.txt | 8 ++++++++ 380/CH4/EX4.11/Ex4_11.sce | 36 ++++++++++++++++++++++++++++++++++++ 3 files changed, 80 insertions(+) create mode 100755 380/CH4/EX4.11/4_11.txt create mode 100755 380/CH4/EX4.11/4_11_R.txt create mode 100755 380/CH4/EX4.11/Ex4_11.sce (limited to '380/CH4/EX4.11') diff --git a/380/CH4/EX4.11/4_11.txt b/380/CH4/EX4.11/4_11.txt new file mode 100755 index 000000000..d7464ab01 --- /dev/null +++ b/380/CH4/EX4.11/4_11.txt @@ -0,0 +1,36 @@ +//Caption:Find the efficiency and voltage regulation +//Exa:4.11 +clc; +clear; +close; +V_2a=480;//in volts +pf=0.707;//leading +theta=acosd(pf); +a_T=120/480;//ratio of transformation of step-up transformer +a=360/120;//ratio of transformation of two-winding transformer +R_cH=8.64*1000;//in ohms +R_H=18.9;//in ohms +X_H=21.6;//in ohms +X_L=2.4;//in ohms +R_L=2.1;//in ohms +X_mH=6.84*1000;//in ohms +R_cL=R_cH/a^2;//equivalent core loss resistance in ohms +X_mL=X_mH/a^2;//magnetizing reactance +I_2a=(720/360)*(cosd(theta)+%i*sind(theta)); +I_H=I_2a; +I_pa=I_2a/a_T; +I_com=I_pa-I_2a;//current through common winding (in Amperes) +//on applying KVL to the output loop +E_L=(I_2a*(R_H+%i*X_H)+V_2a-I_com*(R_L+%i*X_L))/4; +V_1a=E_L+I_com*(R_L+%i*X_L); +I_ca=V_1a/R_cL;//core loss current in Amperes +I_ma=-%i*V_1a/X_mL;//magnetizing current in Amperes +I_phy_a=I_ca+I_ma;//excitation current +I_1a=I_pa+I_phy_a; +P_o=real(V_2a*conj(I_2a)); +P_in=real(V_1a*conj(I_1a)); +Eff=P_o/P_in; +disp(Eff*100,'Efficiency (%)='); +V_2anL=V_1a/a_T;//no load voltage +VR=(abs(V_2anL)-V_2a)/V_2a; +disp(VR*100,'Voltage regulation (%)='); \ No newline at end of file diff --git a/380/CH4/EX4.11/4_11_R.txt b/380/CH4/EX4.11/4_11_R.txt new file mode 100755 index 000000000..c1433dcc2 --- /dev/null +++ b/380/CH4/EX4.11/4_11_R.txt @@ -0,0 +1,8 @@ + Efficiency (%)= + + 80.293414 + + Voltage regulation (%)= + + 1.2578083 + \ No newline at end of file diff --git a/380/CH4/EX4.11/Ex4_11.sce b/380/CH4/EX4.11/Ex4_11.sce new file mode 100755 index 000000000..d7464ab01 --- /dev/null +++ b/380/CH4/EX4.11/Ex4_11.sce @@ -0,0 +1,36 @@ +//Caption:Find the efficiency and voltage regulation +//Exa:4.11 +clc; +clear; +close; +V_2a=480;//in volts +pf=0.707;//leading +theta=acosd(pf); +a_T=120/480;//ratio of transformation of step-up transformer +a=360/120;//ratio of transformation of two-winding transformer +R_cH=8.64*1000;//in ohms +R_H=18.9;//in ohms +X_H=21.6;//in ohms +X_L=2.4;//in ohms +R_L=2.1;//in ohms +X_mH=6.84*1000;//in ohms +R_cL=R_cH/a^2;//equivalent core loss resistance in ohms +X_mL=X_mH/a^2;//magnetizing reactance +I_2a=(720/360)*(cosd(theta)+%i*sind(theta)); +I_H=I_2a; +I_pa=I_2a/a_T; +I_com=I_pa-I_2a;//current through common winding (in Amperes) +//on applying KVL to the output loop +E_L=(I_2a*(R_H+%i*X_H)+V_2a-I_com*(R_L+%i*X_L))/4; +V_1a=E_L+I_com*(R_L+%i*X_L); +I_ca=V_1a/R_cL;//core loss current in Amperes +I_ma=-%i*V_1a/X_mL;//magnetizing current in Amperes +I_phy_a=I_ca+I_ma;//excitation current +I_1a=I_pa+I_phy_a; +P_o=real(V_2a*conj(I_2a)); +P_in=real(V_1a*conj(I_1a)); +Eff=P_o/P_in; +disp(Eff*100,'Efficiency (%)='); +V_2anL=V_1a/a_T;//no load voltage +VR=(abs(V_2anL)-V_2a)/V_2a; +disp(VR*100,'Voltage regulation (%)='); \ No newline at end of file -- cgit