From 7f60ea012dd2524dae921a2a35adbf7ef21f2bb6 Mon Sep 17 00:00:00 2001 From: prashantsinalkar Date: Tue, 10 Oct 2017 12:27:19 +0530 Subject: initial commit / add all books --- 3792/CH6/EX6.10/Ex6_10.sce | 34 ++++++++++++++++++++++++++++++++++ 1 file changed, 34 insertions(+) create mode 100644 3792/CH6/EX6.10/Ex6_10.sce (limited to '3792/CH6/EX6.10/Ex6_10.sce') diff --git a/3792/CH6/EX6.10/Ex6_10.sce b/3792/CH6/EX6.10/Ex6_10.sce new file mode 100644 index 000000000..98c39433f --- /dev/null +++ b/3792/CH6/EX6.10/Ex6_10.sce @@ -0,0 +1,34 @@ +// SAMPLE PROBLEM 6/10 +clc;funcprot(0); +// Given data +l=4;// ft +W=40;// The weight of the slender bar in N +theta=30;// degree +k=30;// The stiffness of the spring in lb/in +ABbar=24;// inch +BDbar=24;// inch +h=-2;// inch +g=32.2;// The acceleration due to gravity in ft/sec^2 + + +// Calculation +// (a) +// T=[[(1/2)*m*v^2]+((1/2)*I_G*omega^2)]; +// T=1.449*omega^2; +T_1=0;// ft-lb +U_12=0;// ft-lb +V_1=0;// ft-lb +V_2=W*((2*cosd(theta))-2);// ft-lb +// We now substitute into the energy equation and obtain +omega=sqrt(((T_1+V_1+U_12)-(V_2))/1.449);// rad/sec +// (b) +x=ABbar-18;// ft +V_1=0;// ft-lb +V_3=(1/2)*k*(x^2)/12;// ft-lb +// T=(1/2)*I_A*omega^2; +// T_3=0.828*v_B^2; +U_13=0;// ft-lb +// The final gravitational potential energy is +V_3p=W*h;// ft-lb +v_B=sqrt(((T_1+V_1+U_13)-(V_3+V_3p))/0.828);// ft-lb +printf("\n(a)The angular velocity of the bar,omega=%1.2f rad/sec \n(b)The velocity with which B strikes the horizontal surface,v_B=%1.2f ft/sec",omega,v_B); -- cgit