From 7f60ea012dd2524dae921a2a35adbf7ef21f2bb6 Mon Sep 17 00:00:00 2001 From: prashantsinalkar Date: Tue, 10 Oct 2017 12:27:19 +0530 Subject: initial commit / add all books --- 3785/CH7/EX7.1/Ex7_1.sce | 27 +++++++++++++++++++++++++++ 1 file changed, 27 insertions(+) create mode 100644 3785/CH7/EX7.1/Ex7_1.sce (limited to '3785/CH7/EX7.1/Ex7_1.sce') diff --git a/3785/CH7/EX7.1/Ex7_1.sce b/3785/CH7/EX7.1/Ex7_1.sce new file mode 100644 index 000000000..d65b2e7a8 --- /dev/null +++ b/3785/CH7/EX7.1/Ex7_1.sce @@ -0,0 +1,27 @@ +// Example 7_1 +clc;funcprot(0); +// Given data +D=6;// The diameter of a steel pipe in inch +Q=2000;// Volume flow rate in gpm +L=1.0;// Length in km +nu=1.0*10^-6;// Kinematic viscosity in m^2/s +rho=1*10^3;// The density of water in kg/m^3 + +// Calculation +// (a) +D=D*2.54*10^-2;// m +Q=(Q*3.782*10^-3)/60;// m^3/s +Vbar=(4*Q)/(%pi*D^2);// m/s +Re_D=(Vbar*D)/nu;// Reynolds number +// (b) +epsilon=5*10^-5;// physical height in m +function[X]=frictionfactor(y) + X(1)=-(2.0*log10(((epsilon/D)/3.7)+(2.51/(Re_D*sqrt(y(1))))))-(1/sqrt(y(1))); +endfunction +// Guessing a value of f=1*10^-2; +y=[1*10^-2]; +f=fsolve(y,frictionfactor); +dp=f*((1/2)*rho*Vbar^2)*((L*10^3)/D);// The pressure drop in Pa +P=dp*Q;// The power required to maintain the flow in W +printf("\n(a)Re_D=%1.3e.The How is turbulent since the Reynolds number exceeds the transition value of 2300. \n(b)The pressure drop,deltap=%1.3e Pa \n(c)The power required to maintain the flow,P=%1.3e W",Re_D,dp,P); +// The answer is varied due to round off error -- cgit