From d1e070fe2d77c8e7f6ba4b0c57b1b42e26349059 Mon Sep 17 00:00:00 2001 From: prashantsinalkar Date: Sat, 3 Feb 2018 10:59:42 +0530 Subject: Modified the code --- 3776/CH8/EX8.1/Ex8_1.sce | 6 +++--- 3776/CH8/EX8.3/Ex8_3.sce | 11 +++++------ 3776/CH8/EX8.4/Ex8_4.sce | 19 +++++++++---------- 3776/CH8/EX8.7/Ex8_7.sce | 4 ++-- 3776/CH8/EX8.8/Ex8_8.sce | 17 +++++++++-------- 5 files changed, 28 insertions(+), 29 deletions(-) (limited to '3776/CH8') diff --git a/3776/CH8/EX8.1/Ex8_1.sce b/3776/CH8/EX8.1/Ex8_1.sce index 2510958ab..2fd755047 100644 --- a/3776/CH8/EX8.1/Ex8_1.sce +++ b/3776/CH8/EX8.1/Ex8_1.sce @@ -3,9 +3,9 @@ clear // // o = 22.5 //degrees , The angle of infetisimal wedge -A = 1 //mm2 The area of the element -A_ab = 1*(cos((%pi/180)*(o))) //mm2 - The area corresponds to AB -A_bc = 1*(sin((%pi/180)*(o))) //mm2 - The area corresponds to BC +A = 1 //sq.mm The area of the element +A_ab = 1*(cos((%pi/180)*(o))) //sq.mm - The area corresponds to AB +A_bc = 1*(sin((%pi/180)*(o))) //sq.mm - The area corresponds to BC S_1 = 3 //MN The stresses applying on the element S_2 = 2 //MN S_3 = 2 //MN diff --git a/3776/CH8/EX8.3/Ex8_3.sce b/3776/CH8/EX8.3/Ex8_3.sce index 6172f655f..9bda8dc65 100644 --- a/3776/CH8/EX8.3/Ex8_3.sce +++ b/3776/CH8/EX8.3/Ex8_3.sce @@ -1,16 +1,15 @@ clear -//Given +//Given // // S_x = -2 //MPa _ the noraml stress in x direction S_y = 4 //MPa _ the noraml stress in Y direction -c = (S_x + S_y)/2 //MPa - The centre of the mohr circle -point_x = -2 //The x coordinate of a point on mohr circle +c = (S_x + S_y)/2 //MPa - The centre of the mohr circle +point_x = 3 //The x coordinate of a point on mohr circle point_y = 4 //The y coordinate of a point on mohr circle -Radius = ((point_x-c)**2 + point_y**2**0.5) // The radius of the mohr circle +Radius = ((point_x)**2 + point_y**2)**0.5 // The radius of the mohr circle S_1 = Radius +1//MPa The principle stress S_2 = -Radius +1 //MPa The principle stress S_xy_max = Radius //MPa The maximum shear stress -printf("\n The principle stresses are %0.3f MPa %0.3f MPa",S_1,S_2) +printf("\n The principle stresses are %0.3f MPa, %0.3f MPa",S_1,S_2) printf("\n The maximum shear stress %0.3f MPa",S_xy_max) -printf("\n The maximum tensile stress which is the result of all stresses must act as shown in the figure") diff --git a/3776/CH8/EX8.4/Ex8_4.sce b/3776/CH8/EX8.4/Ex8_4.sce index 75a4498ff..fb3b4c6ff 100644 --- a/3776/CH8/EX8.4/Ex8_4.sce +++ b/3776/CH8/EX8.4/Ex8_4.sce @@ -3,18 +3,17 @@ clear // S_x = 3.0 //MPa _ the noraml stress in x direction S_y = 1.0 //MPa _ the noraml stress in Y direction -c = (S_x + S_y)/2 //MPa - The centre of the mohr circle +c = (S_x + S_y)/2 //MPa - The centre of the mohr circle point_x = 1 //The x coordinate of a point on mohr circle point_y = 3 //The y coordinate of a point on mohr circle -//Caliculations +//calculations -Radius = ((point_x-c)**2 + point_y**2**0.5) // The radius of the mohr circle -//22.5 degrees line is drawn -o = 22.5 //degrees -a = 71.5 - 2*o //Degrees, from diagram -stress_n = c + Radius*sin((180/%pi)*(o)) //MPa The normal stress on the plane -stress_t = Radius*cos((180/%pi)*(o)) //MPa The tangential stress on the plane +Radius = ((point_x)**2 + point_y**2)**0.5 // The radius of the mohr circle +//22.5 degrees line is drawn +o = 22.5 //degrees +a = 71.57 - 2*o //Degrees, from diagram +stress_n = c + Radius*sin((180/%pi)*(o)) //MPa The normal stress on the plane +ang = sind((-a)) +stress_t = Radius*ang //MPa The tangential stress on the plane printf("\n The normal stress on the 22 1/2 plane %0.2f MPa",stress_n) printf("\n The tangential stress on the 22 1/2 plane %0.2f MPa",stress_t) -printf("\n answer varies due to rounding off errors") - diff --git a/3776/CH8/EX8.7/Ex8_7.sce b/3776/CH8/EX8.7/Ex8_7.sce index a497ec56a..8013fda4e 100644 --- a/3776/CH8/EX8.7/Ex8_7.sce +++ b/3776/CH8/EX8.7/Ex8_7.sce @@ -3,7 +3,7 @@ clear e_x = -500 //10-6 m/m The contraction in X direction e_y = 300 //10-6 m/m The contraction in Y direction e_xy = -600 //10-6 m/m discorted angle -centre = (e_x + e_y)/2 //10-6 m/m +centre = (e_x + e_y)/2 //10-6 m/m point_x = -500 //The x coordinate of a point on mohr circle point_y = 300 //The y coordinate of a point on mohr circle Radius = 500 //10-6 m/m - from mohr circle @@ -11,5 +11,5 @@ e_1 = Radius +centre //MPa The principal strain e_2 = -Radius +centre //MPa The principal strain k = atan(300.0/900) // from geometry k_1 = (180/%pi)*(k) -printf("\n The principal strains are %0.3f um/m %0.3f um/m",e_1,e_2) +printf("\n The principal strains are %0.3f micro m/m %0.3f micro m/m",e_1,e_2) printf("\n The angle of principal plane %0.2f degrees",k_1) diff --git a/3776/CH8/EX8.8/Ex8_8.sce b/3776/CH8/EX8.8/Ex8_8.sce index 0c8fd0488..57bd71918 100644 --- a/3776/CH8/EX8.8/Ex8_8.sce +++ b/3776/CH8/EX8.8/Ex8_8.sce @@ -1,24 +1,25 @@ clear //Given -e_0 = -500 //10-6 m/m -e_45 = 200 //10-6 m/m +e_0 = -500 //10-6 m/m +e_45 = 200 //10-6 m/m e_90 = 300 //10-6 m/m -E = 200 //Gpa - youngs modulus of steel -v = 0.3 // poissions ratio -//Caliculations +E = 200 //GPa - youngs modulus of steel +v = 0.3 // Poissons ratio +//calculations e_xy = 2*e_45 - (e_0 +e_90 ) //10-6 m/m from equation 8-40 in text // from example 8.7 e_x = -500 //10-6 m/m The contraction in X direction e_y = 300 //10-6 m/m The contraction in Y direction e_xy = -600 //10-6 m/m discorted angle -centre = (e_x + e_y)/2 //10-6 m/m +centre = (e_x + e_y)/2 //10-6 m/m point_x = -500 //The x coordinate of a point on mohr circle point_y = 300 //The y coordinate of a point on mohr circle Radius = 500 //10-6 m/m - from mohr circle e_1 = Radius +centre //MPa The principle strain e_2 = -Radius +centre //MPa The principle strain -stress_1 = E*(10**-3)*(e_1+v*e_2)/(1-v**2) //MPa the stress in this direction -stress_2 = E*(10**-3)*(e_2+v*e_1)/(1-v**2) //MPa the stress in this direction +stress_1 = E*(10**-3)*(e_1+v*e_2)/(1-v**2) //MPa the stress in this direction +stress_2 = E*(10**-3)*(e_2+v*e_1)/(1-v**2) //MPa the stress in this direction printf("\n The principle stresses are %0.2f MPa %0.2f MPa",stress_1,stress_2) +// answer in textbook is wrong -- cgit