From 7f60ea012dd2524dae921a2a35adbf7ef21f2bb6 Mon Sep 17 00:00:00 2001 From: prashantsinalkar Date: Tue, 10 Oct 2017 12:27:19 +0530 Subject: initial commit / add all books --- 3761/CH4/EX4.1/Ex4_1.sce | 63 ++++++++++++++++++++++++++++ 3761/CH4/EX4.10/Ex4_10.sce | 20 +++++++++ 3761/CH4/EX4.11/Ex4_11.sce | 71 +++++++++++++++++++++++++++++++ 3761/CH4/EX4.12/Ex4_12.sce | 50 ++++++++++++++++++++++ 3761/CH4/EX4.13/Ex4_13.sce | 50 ++++++++++++++++++++++ 3761/CH4/EX4.14/Ex4_14.sce | 33 +++++++++++++++ 3761/CH4/EX4.15/Ex4_15.sce | 102 +++++++++++++++++++++++++++++++++++++++++++++ 3761/CH4/EX4.16/Ex4_16.sce | 66 +++++++++++++++++++++++++++++ 3761/CH4/EX4.17/Ex4_17.sce | 54 ++++++++++++++++++++++++ 3761/CH4/EX4.2/Ex4_2.sce | 40 ++++++++++++++++++ 3761/CH4/EX4.3/Ex4_3.sce | 59 ++++++++++++++++++++++++++ 3761/CH4/EX4.4/Ex4_4.sce | 62 +++++++++++++++++++++++++++ 3761/CH4/EX4.5/Ex4_5.sce | 67 +++++++++++++++++++++++++++++ 3761/CH4/EX4.6/Ex4_6.sce | 54 ++++++++++++++++++++++++ 3761/CH4/EX4.7/Ex4_7.sce | 50 ++++++++++++++++++++++ 3761/CH4/EX4.8/Ex4_8.sce | 61 +++++++++++++++++++++++++++ 3761/CH4/EX4.9/Ex4_9.sce | 80 +++++++++++++++++++++++++++++++++++ 17 files changed, 982 insertions(+) create mode 100644 3761/CH4/EX4.1/Ex4_1.sce create mode 100644 3761/CH4/EX4.10/Ex4_10.sce create mode 100644 3761/CH4/EX4.11/Ex4_11.sce create mode 100644 3761/CH4/EX4.12/Ex4_12.sce create mode 100644 3761/CH4/EX4.13/Ex4_13.sce create mode 100644 3761/CH4/EX4.14/Ex4_14.sce create mode 100644 3761/CH4/EX4.15/Ex4_15.sce create mode 100644 3761/CH4/EX4.16/Ex4_16.sce create mode 100644 3761/CH4/EX4.17/Ex4_17.sce create mode 100644 3761/CH4/EX4.2/Ex4_2.sce create mode 100644 3761/CH4/EX4.3/Ex4_3.sce create mode 100644 3761/CH4/EX4.4/Ex4_4.sce create mode 100644 3761/CH4/EX4.5/Ex4_5.sce create mode 100644 3761/CH4/EX4.6/Ex4_6.sce create mode 100644 3761/CH4/EX4.7/Ex4_7.sce create mode 100644 3761/CH4/EX4.8/Ex4_8.sce create mode 100644 3761/CH4/EX4.9/Ex4_9.sce (limited to '3761') diff --git a/3761/CH4/EX4.1/Ex4_1.sce b/3761/CH4/EX4.1/Ex4_1.sce new file mode 100644 index 000000000..aed818c3b --- /dev/null +++ b/3761/CH4/EX4.1/Ex4_1.sce @@ -0,0 +1,63 @@ +disp("EXAMPLE 4.1") +disp("Material Properties","Applied Moment = 50kNm","Grade of Steel = Fe415","Grade of Concrete = M20","Ast = 4-25mm dia bars","d = 550mm","D = 600mm","b = 300mm","Given:") +//disp("Given:") +b=300 +d=550 + +disp("sigmacbc= 7 MPa") +m=280/(3*7) +disp("modular ratio , m =" +string(m)) +// m= 280/(3*sigmacbc) + + +fcr = 0.7 * sqrt(20) +disp("modulus of rupture, fcr =" +string(fcr)) +// fcr = o.7 * sqrt(Fck) + +disp("Approximate Cracking Moment , assuming gross concrete section") +b=300 +D=600 +Z= (b*D*D)/6 +disp(" in mm^3","Section Modulus Z=" + string(Z)) +//Cracking Moment +Mcr= (fcr*Z)/(10^6) +disp("in kNm","Cracking Moment =" +string(Mcr)) + +disp("Transformed Section Properties") +diabar=25 +Ast=(4*%pi*25*25)/4 +disp("in mm^2","Area of Tension Steel = " +string(Ast)) +disp("Transformed Area, At") +disp("At = bD + (m-1)Ast") +disp("Depth of neutral axis y") +disp("At y = (bD)(D/2)+(m-1)Ast(d)") +y=(((b*D*D)/2)+((Ast)*(m-1)*(d)))/(((b*D))+ ((m-1)*Ast)) +disp("in mm","Depth of neutral axis, y = " +string(y)) +yc=y +yt= D-yc +ys=d-yc + +disp("Distance from NA to extreme compression fibre, yc= " +string(yc)) +disp("Distance from NA to extreme tension fibre, yt=" +string(yt)) +disp("Distance from NA to reinforcing steel, ys=" +string(ys)) +disp("Transformed Second Moment of Area") +It = (b*yc^3/3)+(b*yt^3/3)+ ((m-1)*Ast*ys*ys) + +disp("Calculating Cracking Moment","4.1.a") +Mcra = (fcr*It/(yt*10^6)) +disp("in kNm", "Cracking Moment=" +string(Mcra)) + +disp("Stresses due to applied moment","4.1.b") + +M=50 +fc = M*yc*10^6/It +disp("in MPa","Maximum Compressive Stress in Concrete, fc= " +string(fc)) +fct= (M*yt*10^6/It) +disp("in MPa", "Maximum Tensile Stress in Concrete, fct=" +string(fct)) + +if(fctxu,max. The value of fst obtained from last itteration is obtained as 349MPa, therefore, MuR=fst*Ast*(d-0.416*xu)") +MuR1=fst*Ast*(d-0.416*xu)/10^6 +disp("kNm",MuR1,"Therefore, MuR=") +disp("Alternative (using analysis aid)") +pt=(100*Ast)/(b*d) +disp(pt,"Referring Table A.2(a)-for M20 concrete and Fe415 steel for pt=") +disp("MuR/bd^2 for pt,1.18 = 3.145 and for pt, 1.20 = 3.170, therefore, for M20 concrete and Fe415 steel and pt=1.19 MuR/bd^2=") +MuR1bd2=(3.145+3.170)/2 +MuR1=MuR1bd2*b*d^2/10^6 +disp("kNm",MuR1,"MuR=") + +disp("Example 4.11.b, (Refering Example 4.10") +disp("Grade of Steel,fy = Fe250","Grade of Concrete,fck = M20","D=600mm","d=550mm","b=300mm","Bars used = 4 - 25 dia") +b=300 +d=550 +D=600 +fck=20 +Ast=%pi*4*25*25/4 +disp("mm^2",Ast,"Ast=") +disp("For Fe415 Steel,") +Es=2*10^5 +fy=250 +Est=0.87*fy/Es +xumaxd=(0.0035/(0.0055+Est)) +//disp(xumaxd,"xumax/d") +//xumax=xumaxd*d +//disp("mm",xumax,"xu,max=") +//disp("Assuming, xuDf, the value is incorrect ") + +disp("Asxu>Df, the compression in web is given by: Cuw=0.362*fck*bw*xu") +Cuw=0.362*fck*bw +disp("*xu N",Cuw) +disp("Assuming xu>/7/3*Df = 233.3, the commpression in the flange is given by: Cuf=0.447*fck*(bf-bw)*Df") +Cuf=0.447*fck*(bf-bw)*Df +disp("Cuf=") +disp("N",Cuf) +disp("Also assuming xuDf, Hence this value of xu is not correct") +disp("As xu>Df, Cuw = 0.362*fck*fy*bw*xu") +Cuw=0.362*fck*fy +disp("xu N", Cuw,"Cuw=") +disp("ASssuming xu>/7/3*Df = 233.33mm, yf=Df=100mm and Cuf=0.447*fck*(bf-bw)*Df") +Cuf=0.447*fck*(bf-bw)*Df +disp("N",Cuf,"Cuf=") +disp("Further assuming xu7/3Df =233.3mm, but not xuxu,max, hence the section is over-reinforced") +disp("Exact Solution considering strain compatibility") +disp("Applying Eq. 4.81: xu = fst*Ast - (fsc-0.447*fck)*Asc/(0.362*fck*b)") +disp("Therefore,xu=(3054*fst - 982*fsc+8779)/2172") + +disp("First Cycle") +disp("1. xu lies within the two limits above; 263.5 mm < xu < 348.5mm") +disp("2. xu = (xu,max+xu)/2") +xu1=(xumax+xu)/2 +disp("mm",xu1,"xu=") +disp("3.Esc = 00035*(1-dd/xu1)") +Esc = 0.0035*(1-dd/xu1) +disp(Esc,"Esc=") +disp("4.Est = 0.0035*(d/xu1-1)") +Est = 0.0035*(d/xu1-1) +disp(Est,"Est=") +disp("for Esc= 0.00380 fsc = 360.9 and for Esc = 0.00276 fsc=351.8") +fst1=351.8 +fst2=360.9 +fsc=fst1+((fst2-fst1)*((Esc*10^5-276)/(380-276))) +disp("MPa",fsc,"fsc=") +fst=fst1+((fst2-fst1)*((Est*10^5-276)/(380-276))) +disp("MPa",fst,"fst=") +disp("Therefore, xu = ") +xu2=(3054*fst - 982*fsc+8779)/2172 +disp("mm",xu2,"xu=") + +disp("Second Cycle") +disp("Assume xu= ") +xu3=(xu2+xu1)/2 +disp("mm",xu3,"xu=") +Esc = 0.0035*(1-dd/xu3) +disp(Esc,"Esc=") +Est1=0.0035*(d/xu3-1) +disp(Est1,"Est=") +disp("for Esc= 0.00380 fsc = 360.9 and for Esc = 0.00276 fsc=351.8") +fst1=351.8 +fst2=360.9 +fsc=fst1+((fst2-fst1)*((Esc*10^5-276)/(380-276))) +disp("MPa",fsc,"fsc=") +disp("For strain, 0.00276 fst = 351.8 and for strain 0.00241 fst=342.8 From table 3.2") +fst4=351.8 +fst3=342.8 +fst11=(fst3+(fst4-fst3)*((Est1*10^5-241)/(276-241))) +disp("MPa",fst11,"fst1=") +xu4=(3054*fst11- 982*fsc+8779)/2172 +disp("mm",xu4,"xu=") + +disp("Third Cycle") +disp("1.Assume xu=") +xu5=(xu3+xu4)/2 +disp("mm",xu5,"xu=") +Esc = 0.0035*(1-dd/xu5) +disp(Esc,"Esc=") +Est2=0.0035*(d/xu5-1) +disp(Est2, "Est=") +disp("for Esc= 0.00380 fsc = 360.9 and for Esc = 0.00276 fsc=351.8") +fst1=351.8 +fst2=360.9 +fsc=fst1+((fst2-fst1)*((Esc*10^5-276)/(380-276))) +disp("For strain, 0.00276 fst = 351.8 and for strain 0.00241 fst=342.8 From table 3.2") +fst12=342.8 +disp("MPa",fst12,"fst2=") +xu6=(3054*fst12- 982*fsc+8779)/2172 +disp("mm",xu6,"xu,final=") +Cuc=0.362*fck*b +Cus=(fsc-0.447*fck)*Asc +MuR=(Cuc*xu6*(d-0.416*xu6)+Cus*(d-dd))/10^6 +disp("kNm",MuR,"MuR,final=") + +disp("Approximate Solution") +disp("As an approximate and conservative estimate limiting xu to xu,max=263.5mm,") +Esc=0.0035*(1-dd/xumax) +disp(Esc,"Esc=") +fsc=352.5 +disp("MPa",fsc,"fsc=") +disp("This value is alternatively obtainable from Table 4.5 for dd/d=0.09 and Fe415") +disp("Accordingly, limiting the ultimate moment of resistance MuR to the limiting moment Mu,lim") +Mulim=(0.362*fck*b*xumax*(d-0.416*xumax)+(fsc-0.447*fck)*Asc*(d-dd))/10^6 +disp("kNm",Mulim,"Mu,lim=") diff --git a/3761/CH4/EX4.16/Ex4_16.sce b/3761/CH4/EX4.16/Ex4_16.sce new file mode 100644 index 000000000..f817fdc2e --- /dev/null +++ b/3761/CH4/EX4.16/Ex4_16.sce @@ -0,0 +1,66 @@ +disp("Example 4.16") +disp("Ast= 4-25dia bars","Asc= 2-25 dia bars","fck=20MPa","fy=415MPa","dd=45mm","d=655mm","b=300mm","Given:") +disp("xu,max/d=0.479") +Es=2*10^5 +dd=45 +d=655 +b=300 +fy=415 +fck=20 +Ast=%pi*25*25 +Asc=%pi*25*25*2/4 +xumaxd=0.0035/(0.0055+(0.87*fy/Es)) +xumax=xumaxd*d +disp("mm",xumax,"xu,max=") +disp("Assuming for a first approximation fsc=fst=0.87*fy") +Cuc=0.362*fck*b +disp("xu N",Cuc,"Cuc=") +Cus=(0.87*fy-0.447*fck)*Asc +disp("N",Cus,"Cus=") +Tu=0.87*fy*Ast +disp("N",Tu,"Tu=") +disp("Considering force equilibrium:Cuc+Cus = Tu") +xu=(Tu-Cus)/Cuc +disp("mm",xu,"xu=") +disp("xukb, the section is over reinforced (WSM method)") +disp("therefore, concrete stress controls, fc=sigmacbc= 7MPa") +disp("Applying Tension force=Compressive force") +disp("fst*Ast = 0.5*sigmacbc*b*kd") +fst= 0.5*sigmacbc*b*kd1/Ast +disp("MPa",fst,"fst=") +disp("Alternatively, considering the linear stress distribution") +fc=7 +fst1=(m*fc*(1-k))/k +disp("MPa",fst1,"fst=") + +disp("Calculating Allowable Bending Moment") +disp("Taking moments of forces about the tension steel considered") +disp("Mall= (0.5*sigmacbc*b*kd)*(d-(kd/3)") +Mall= (0.5*sigmacbc*b*kd1)*(d-(kd1/3)) +Mall1=Mall/10^6 +disp("kN-m",Mall1,"Mall=") +disp("Alternatively, using the analysis aids given in TABLE A.1(a) ") +pt=1.190 +disp("Muall = 1.28*bd^2") +Muall=1.28*b*d*d/10^6 +disp("kNm",Muall,"Muall=") + + + + diff --git a/3761/CH4/EX4.4/Ex4_4.sce b/3761/CH4/EX4.4/Ex4_4.sce new file mode 100644 index 000000000..025fbc195 --- /dev/null +++ b/3761/CH4/EX4.4/Ex4_4.sce @@ -0,0 +1,62 @@ +L=6 +Df=100 +bw=250 +b=1000 +D=600 +d=520 +M=200 +disp("Example 4.4") +disp("Service Load Moment = 200kNm","Ast=6-28mmdia bar","Effective depth d=520 mm","Depth D=600mm","b=1000mm","bw=250mm","Depth of Flange Df=100mm","Span of Beam L=6m","Given Data:") +disp("Grade of Steel =Fe250","Grade of Concrete=M20") +disp("Verifying for the effective flange width b") +disp("Refering IS456:2000, Clause 23.1.2 c or Eq 4.30(b) from TB") +disp("For T-beams, bf = (lo/((lo/b)+4)+bw") +disp("bw=250mm","lo=6000mm") +lo=6000 +bf=((lo)/((lo/b)+4)+bw) +disp("mm",bf,"bf=") + +if(bfDf, the assumption kdDf, neutral axis located in the web") +disp("Using Equation 4.31 of TB") +disp("(bf-bw)*Df*(kd-Df/2)+ bw*(kd)^2/2 = mAst*(d-kd)") +a=bw/2 +B=(bf*Df-bw*Df+mAst) +c=(bw*Df*Df/2 - bf*Df*Df/2-mAst*d) + +Dis=(B*B)-(4*a*c) +kd1=((-B+sqrt(Dis))/(2*a)) +disp("mm",kd1,"kd=") +disp("Relating the compressive stress fc1 at the flange bottom to fc,") +disp("fc1=fc*((kd-Df)/kd)") +fact=((kd1-Df)/kd1) +disp("*fc",fact,"fc1=") +disp("Compressive Force C= 0.5*fc*bf*(kd)-0.5*fc1*(bf-bw)*(kd-Df)") +disp("Taking moments of forces about the tension steel centriod, using equation 4.34") +fc=((M*10^6)/((0.5*bf*(kd1)*(d-kd1/3)-(0.5*fact*(bf-bw)*(kd1-Df))*(d-Df-((kd1-Df)/3))))) +disp("MPa",fc,"Therefore, on solving we get, fc=") +disp("Applying C= T") +fst= (0.5*fc*bf*(kd1)-0.5*fact*fc*(bf-bw)*(kd1-Df))/Ast +disp("MPa",fst,"Therefore, fst = ") +disp("From the stress distribution diagram: fst = m*fc*((d-kd)/kd)") +fst1=m*fc*((d-kd1)/kd1) +disp("MPa",fst1, "As before") + + diff --git a/3761/CH4/EX4.5/Ex4_5.sce b/3761/CH4/EX4.5/Ex4_5.sce new file mode 100644 index 000000000..27366a9e7 --- /dev/null +++ b/3761/CH4/EX4.5/Ex4_5.sce @@ -0,0 +1,67 @@ +disp("Example 4.5") +disp("Calculating allowable moment capacity for beam of section as in 4.4") +L=6 +Df=100 +bw=250 +b=1000 +D=600 +d=520 +M=200 +disp("Example 4.4") +disp("Service Load Moment = 200kNm","Ast=6-28mmdia bar","Effective depth d=520 mm","Depth D=600mm","b=1000mm","bw=250mm","Depth of Flange Df=100mm","Span of Beam L=6m","Given Data:") +disp("Grade of Steel =Fe250","Grade of Concrete=M20") +disp("Verifying for the effective flange width b") +disp("Refering IS456:2000, Clause 23.1.2 c or Eq 4.30(b) from TB") +disp("For T-beams, bf = (lo/((lo/b)+4)+bw") +disp("bw=250mm","lo=6000mm") +lo=6000 +bf=((lo)/((lo/b)+4)+bw) +disp("mm",bf,"bf=") + +if(bfDf, the assumption kdDf, neutral axis located in the web") +disp("Using Equation 4.31 of TB") +disp("(bf-bw)*Df*(kd-Df/2)+ bw*(kd)^2/2 = mAst*(d-kd)") +a=bw/2 +B=(bf*Df-bw*Df+mAst) +c=(bw*Df*Df/2 - bf*Df*Df/2-mAst*d) + +Dis=(B*B)-(4*a*c) +kd1=((-B+sqrt(Dis))/(2*a)) +disp("mm",kd1,"kd=") +disp("The neutral axis depth factor, k") +k=kd1/d +disp(k,"k=") +disp("For a balanced section as per Eq 4.23, kb") +sigmast=130 +kb=280/(280+3*sigmast) +disp(kb,"kb=") +disp("As k20mm") +fst=sigmast +fc=(kd1/(d-kd1))*(fst/m) +fc1=0.526*fc //As derived in previous example 4.4 +disp("MPa",fc,"fc=") +disp("MPa",fc1,"fc1=") +disp("Substituting in Eq 4.34") +fact=0.526 +M=(fc*((0.5*bf*(kd1)*(d-kd1/3)-(0.5*fact*(bf-bw)*(kd1-Df))*(d-Df-((kd1-Df)/3)))))/10^6 +disp("Therefore, Moment carrying capacity Mall=") +disp("kNm", M , "Mall=") diff --git a/3761/CH4/EX4.6/Ex4_6.sce b/3761/CH4/EX4.6/Ex4_6.sce new file mode 100644 index 000000000..b2a351109 --- /dev/null +++ b/3761/CH4/EX4.6/Ex4_6.sce @@ -0,0 +1,54 @@ +disp("Example 4.6") +disp("Asc=2-25dia bars","Ast=3-36dia bars","Service Load Moment = 175kNm","M20 Grade of concrete and Fe250steel","sigmast=130MPa","Sigmacbc=7 MPa","dd = 50mm","d=550mm","b=300mm","Given:") +b=300 +d=550 +dd=50 +sigmacbc=7 +sigmast=130 +M=175 +Ast= %pi*36*36*3/4 +Asc=2*%pi*25*25/4 +disp("Transformed Section Properties") +m=13.33 //(280/(3*sigmacbc)) +mAst=m*Ast +CSA=(1.5*m-1)*Asc +disp("mm^2",mAst,"Transformed tension steel area=") +disp("mm^2",CSA,"Transformed Compression Steel Area=") + +disp("Neutral Axis Depth") +disp("Considering moments of areas about the neutral axis,") +disp("b*kd^2/2 + CSA*(kd-dd) = mAst*(d-kd)") +a=b/2 +b1=(CSA+mAst) +c=-CSA*dd-mAst*d +D=b1*b1-4*a*c +kd1=(-b1+sqrt(D))/(2*a) +disp("mm",kd1,"Solving kd=") +disp("Stresses due to M=175kNm") +disp("Considering the linear stress distribution") +disp("fcsc= fc*(kd-dd/kd)") +Ccfact=0.5*b*kd1 +Csfact=CSA*((kd1-dd)/kd1) +fc=(M*10^6)/(Ccfact*(d-kd1/3)+Csfact*(d-dd)) +disp("MPa",fc,"fc=") +disp("Compressive Stress in Steel,fsc") +fcsc= fc*((kd1-dd)/kd1) +fsc=1.5*m*fcsc +disp("MPa",fsc,"fsc=") +disp("Tensile Stress in Steel,fst") +fst=m*fc*((d-kd1)/kd1) +disp("MPa",fst,"fst=") +fst=(fc*(Ccfact+Csfact)/Ast) +disp("MPa",fst,"Alternatively, Cc+Cs = T --> fst=") +disp("Allowable Bending Moment") +disp("For a balanced (WSM) section, kb= 280/(280+3*sigmast)") +kb=280/(280+(3*sigmast)) +disp(kb,"kb=") +disp("For the given section, k =kd/d") +k=kd1/d +disp(k,"k=") +disp("Here, k >kb") +disp("Hence the section is over reinforced(WSM)") +disp("whereby fc =sigmacbc =7 MPa") +Mall=fc*(Ccfact*(d-kd1/3)+Csfact*(d-dd))/10^6 +disp(Mall) diff --git a/3761/CH4/EX4.7/Ex4_7.sce b/3761/CH4/EX4.7/Ex4_7.sce new file mode 100644 index 000000000..b3c723353 --- /dev/null +++ b/3761/CH4/EX4.7/Ex4_7.sce @@ -0,0 +1,50 @@ +disp("Example 4.7") +disp("M20 Grade of concrete and Fe250steel","sigmast=130MPa","Sigmacbc=7 MPa","dd = 50mm","d=550mm","b=300mm","Given:") +b=300 +d=550 +dd=50 //Mentioning the top cover d' as dd throughout the example +sigmacbc=7 +sigmast=130 +disp("Transformed Section Properties") +m=13.33 //(280/(3*sigmacbc)) +disp("Neutral Axis Depth, here in this case k=kb, corresponding to balanced section") +disp("For a balanced (WSM) section, kb= 280/(280+3*sigmast)") +kb=280/(280+(3*sigmast)) +disp(kb,"kb=") +kbd=kb*d +disp("mm",kbd,"kb d=") +disp("Considering moments of areas about the neutral axis,") +disp("b*kb d^2/2 + CSA*(kb d-dd) = mAst*(d-kb d)") +disp("On replacing values stated above we get equation as : Ast = (0.8Asc + 1856)mm^2") +disp("Asc is to be determined using equation 4.39 as stated") +disp("M= Cc(d-kb d/3)+Cs(d-dd)") +disp("Cc=0.5*fc*b*(kb.d)") +disp("Cs=(1.5*m-1)*Asc*fc*((kd-dd)/kd)") +M=175*10^6 +fc=7 +Cc=0.5*fc*b*(kbd) +Cs1=(1.5*m-1)*fc*((kbd-dd)/kbd) +Asc=(M-(Cc*(d-kbd/3)))/(Cs1*(d-dd)) +disp("mm^2",Asc,"Therefore, Asc=") +Ast=(0.8*Asc+1856) +disp("mm^2", Ast,"Therefore, Ast=") + +disp("Alternate Solution to Example 4.7") +disp("Calculating Mwb=0.5*kb*(1-kb/3)*sigmacbc*b*d*d") +Mwb=0.5*kb*(1-kb/3)*sigmacbc*b*d*d/10^6 +disp("kNm",Mwb,"Mwb=") +disp("Calculating Ast1=Mwb/(sigmast*d*(1-kb/3)") +Ast1=(Mwb*10^6)/(sigmast*d*(1-kb/3)) +disp("mm^2",Ast1,"Ast1=") +disp("Calculating Ast2, Ast2= (M-Mwb)/(sigmast*(d-dd))") +Ast2= (M-Mwb*10^6)/(sigmast*(d-dd)) +disp("mm^2",Ast2,"Ast2=") +disp("Therefore, Ast= Ast1+Ast2") +Astf=Ast1+Ast2 +disp("mm^2",Astf,"Therefore, final Ast=") +disp("Calculating fcsc=sigmacbc*(1-dd/kbd)") +fcsc=sigmacbc*(1-dd/kbd) +disp(fcsc) +disp("Calculating Asc=(M-Mwb)/(1.5*m-1)*fcsc*(d-dd)") +Asc=(M-Mwb*10^6)/((1.5*m-1)*fcsc*(d-dd)) +disp("mm^2",Asc,"Asc=") diff --git a/3761/CH4/EX4.8/Ex4_8.sce b/3761/CH4/EX4.8/Ex4_8.sce new file mode 100644 index 000000000..4461d96f5 --- /dev/null +++ b/3761/CH4/EX4.8/Ex4_8.sce @@ -0,0 +1,61 @@ +disp("Example 4.8") +disp("Asc=3-28dia bars","Fe250","dd=50mm","Ast=6-28mmdia bar","Effective depth d=520 mm","Depth D=600mm","b=1000mm","bw=250mm","Depth of Flange Df=100mm","Span of Beam L=6m","Given Data:") +Asc=3*%pi*28*28/4 +L=6 +Df=100 +bw=250 +b=1000 +D=600 +d=520 +dd=50 +disp("Grade of Steel =Fe250","Grade of Concrete=M20") +disp("Verifying for the effective flange width b") +disp("Refering IS456:2000, Clause 23.1.2 c or Eq 4.30(b) from TB") +disp("For T-beams, bf = (lo/((lo/b)+4)+bw") +disp("bw=250mm","lo=6000mm") +lo=6000 +bf=((lo)/((lo/b)+4)+bw) +disp("mm",bf,"bf=") + +if(bfdd, and solving Eq4.35 with b=bf") +a=bf/2 +b1=CSA+mAst +c=(-CSA*dd)-(mAst*d) +kd1=((-b1+sqrt((b1*b1)-(4*a*c)))/(2*a)) +disp("mm",kd1,"kd=") +disp("As kd>Df, the assumption kd/Df") +a1=bw/2 +b12=CSA+mAst+Df*(bf-bw) +c1=(-CSA*dd)-(mAst*d)-(Df*Df*(bf-bw)/2) +D1=((b12*b12)-(4*a1*c1)) +kd12=(-b12+sqrt(D1))/(2*a1) +disp("mm",kd12,"kd=") +k=kd12/d +disp("mm",k,"Therefore, k =") +kb=(280)/(280+(3*sigmast)) +disp(kb,"For a balanced WSM section with sigmast=130MPa, kb=") +disp("As k=0.3496xu,max, 326.3mm>263.5mm") +disp("As xu>xu,max steel would not have yielded accordingly the strain compatibility method is adopted to obtain the correct value of xu") +disp("FIRST CYCLE") +disp("1. Assume xu = (xu+xu,max)/2 ") +xu1=(xu+xumax)/2 +disp("mm",xu1,"xu,1=") +disp("2. Strain Compatibility = Est = 0.0035*(d/xu1-1)") +//Est=strainst, ephselon st +Est =0.0035*(d/xu1-1) +disp(Est,"Est=") +disp(Est,"Interpoating for value of fst, corresponding to strain ,Fe415 and Est = ") +disp("For strain, 0.00276 fst = 351.8 and for strain >/0.00380 fst=360.9 From table 3.2") +fst1=351.8 +fst2=360.9 +disp("fst= ") +fst=fst1+((fst2-fst1)*((Est*10^5-276)/(380-276))) +disp("MPa",fst,"fst=") +disp("Cu=Tu") +xu2=fst*(Ast/(0.362*fck*b)) +disp("mm",xu2,"xu,2=") + +disp("SECOND CYCLE") +disp("Assume xu= ") +xu3=(xu2+xu1)/2 +disp("mm",xu3,"xu,3=") +Est1=0.0035*(d/xu3-1) +disp(Est1,"Est=") +disp(Est,"Interpoating for value of fst, corresponding to strain ,Fe415 and Est = ") +disp("For strain, 0.00276 fst = 351.8 and for strain 0.00241 fst=342.8 From table 3.2") +fst4=351.8 +fst3=342.8 +fst11=(fst3+(fst4-fst3)*((Est1*10^5-241)/(276-241))) +disp("MPa",fst11,"fst1=") + +disp("Cu=Tu") +fact=Ast/(0.362*fck*b) +//disp(fact) +xu4=fst11*(fact) +disp("mm",xu4,"xu,4=") + + +disp("THIRD CYCLE") +disp("1.Assume xu=") +xu5=(xu4+xu3)/2 +disp("mm",xu5,"xu,5=") +Est2=0.0035*(d/xu5-1) +disp(Est2, "Est=") +disp(Est,"Interpoating for value of fst, corresponding to strain ,Fe415 and Est = ") +disp("For strain, 0.00276 fst = 351.8 and for strain 0.00241 fst=342.8 From table 3.2") +fst4=351.8 +fst3=342.8 +fst12=(fst3+(fst4-fst3)*((Est2*10^5-241)/(276-241))) +disp("MPa",fst12,"fst2=") + +disp("Cu=Tu") +fact=Ast/(0.362*fck*b) +//disp(fact) +xu6=fst12*(fact) +disp("mm",xu6,"xu,6=") +disp("Therefore, the final value of xu may be takaen as xu=315mm") + -- cgit