From 7f60ea012dd2524dae921a2a35adbf7ef21f2bb6 Mon Sep 17 00:00:00 2001 From: prashantsinalkar Date: Tue, 10 Oct 2017 12:27:19 +0530 Subject: initial commit / add all books --- 3733/CH32/EX32.29/Ex32_29.sce | 61 +++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 61 insertions(+) create mode 100644 3733/CH32/EX32.29/Ex32_29.sce (limited to '3733/CH32/EX32.29/Ex32_29.sce') diff --git a/3733/CH32/EX32.29/Ex32_29.sce b/3733/CH32/EX32.29/Ex32_29.sce new file mode 100644 index 000000000..3e3281d1e --- /dev/null +++ b/3733/CH32/EX32.29/Ex32_29.sce @@ -0,0 +1,61 @@ +// Example 32_29 +clc;funcprot(0); +//Given data +L_cap=1200;// MW +T=[0 4 8 12 16 20 22];// hours +C_1=[200 600 1000 400 200 100];// MW +C_2=[800 400 200 200 600 400];// MW +Tl=[1000 1000 1200 600 800 500];// MW + +// Calculation +E_1=((C_1(1)*(T(2)-T(1)))+(C_1(2)*(T(3)-T(2)))+(C_1(3)*(T(4)-T(3)))+(C_1(4)*(T(5)-T(4)))+(C_1(5)*(T(6)-T(5)))+(C_1(6)*(T(7)-T(6))));// MW +L_a1=E_1/24;// Average load in MW +L_max1=C_1(3);// Maximum load in MW +LF_1=L_a1/L_max1;// Load factor of the consumer 1 +E_2=((C_2(1)*(T(2)-T(1)))+(C_2(2)*(T(3)-T(2)))+(C_2(3)*(T(4)-T(3)))+(C_2(4)*(T(5)-T(4)))+(C_2(5)*(T(6)-T(5)))+(C_2(6)*(T(7)-T(6))));// MW +L_a2=E_2/24;// Average load in MW +L_max2=C_2(5);// Maximum load in MW +LF_2=L_a2/L_max2;// Load factor of the consumer 1 +E_t=E_1+E_2;// Total energy consumed by both consumers in MW +AL_p=E_t/24;// Average load of the plant in MW +LF_p=AL_p/L_cap;// Load factor of the plant +DF_p=(L_max1+L_max2)/L_cap;// Diversity factor of the plant +t_p=[0 0 4 4 8 8 12 12 16 16 20 20 22];// hours +C_1p=[0 200 200 600 600 1000 1000 400 400 200 200 100 100];// MW +C_2p=[0 800 800 400 400 200 200 200 200 600 600 400 400];// MW +T_p=[0 1000 1000 1000 1000 1200 1200 600 600 800 800 500 500];// MW +L_avg1=[L_a1 L_a1 L_a1 L_a1 L_a1 L_a1 L_a1 L_a1 L_a1 L_a1 L_a1 L_a1 L_a1]; +L_avg2=[L_a2 L_a2 L_a2 L_a2 L_a2 L_a2 L_a2 L_a2 L_a2 L_a2 L_a2 L_a2 L_a2]; +AL_p=[AL_p AL_p AL_p AL_p AL_p AL_p AL_p AL_p AL_p AL_p AL_p AL_p AL_p]; +subplot(3,1,1); +xlabel('Time in hrs'); +ylabel('Load (mw)'); +xtitle('Consumes-I 1200 MW'); +plot(t_p',C_1p','b',t_p',L_avg1','r-.'); +legend('Load curve','AL_1'); +subplot(3,1,2); +xlabel('Time in hrs'); +ylabel('Load (mw)'); +xtitle('Consumes-II 1200 MW'); +plot(t_p',C_2p','b',t_p',L_avg2','r-.'); +legend('Load curve','AL_2'); +subplot(3,1,3); +xlabel('Time in hrs'); +ylabel('Load (mw)'); +plot(t_p',T_p','b',t_p',AL_p','r-.'); +legend('Load curve of the generating plant','AL_p'); +//(d) +n_g=40/100;// Overall efficiency of generation +CV=20000;// kJ/kg +E=E_t/n_g;// Thermal energy generated in the plant in MWh +E=E*10^3*3600;// kJ/hr +C_u=(E/(CV*10^3));// Coal used per hour in tons/hr +C=C_u*30;// tons/day +C=C_u/L_cap;// tons/MW-hr +cc=50/100;// Rs./kg +Cc=(C*10^3*cc)/10^3;// Cost of coal per kWh in rupees +L_am=74.2;// Average load in MW +L_max=120;// Maximum demand in MW +CF=L_am/L_max;// Capacity factor of the plant +printf('\n(a)Load factor of the consumer I=%0.3f \n Load factor of the consumer II=%0.2f \n(b)Load factor of the plant=%0.2f \n(c)Diversity factor of the plant=%0.1f \n(d)The amount of coal required per day=%0.2f tons/MW-hr',LF_1,LF_2,LF_p,DF_p,C); +// The answer provided in the textbook is wrong -- cgit