From 7f60ea012dd2524dae921a2a35adbf7ef21f2bb6 Mon Sep 17 00:00:00 2001 From: prashantsinalkar Date: Tue, 10 Oct 2017 12:27:19 +0530 Subject: initial commit / add all books --- 3720/CH5/EX5.1/Ex5_1.sce | 20 ++++++++++++++++++++ 3720/CH5/EX5.12/Ex5_12.sce | 23 +++++++++++++++++++++++ 3720/CH5/EX5.13/Ex5_13.sce | 16 ++++++++++++++++ 3720/CH5/EX5.14/Ex5_14.sce | 24 ++++++++++++++++++++++++ 3720/CH5/EX5.15/Ex5_15.sce | 16 ++++++++++++++++ 3720/CH5/EX5.2/Ex5_2.sce | 13 +++++++++++++ 3720/CH5/EX5.3/Ex5_3.sce | 24 ++++++++++++++++++++++++ 3720/CH5/EX5.5/Ex5_5.sce | 10 ++++++++++ 3720/CH5/EX5.6/Ex5_6.sce | 9 +++++++++ 3720/CH5/EX5.7/Ex5_7.sce | 21 +++++++++++++++++++++ 3720/CH5/EX5.8/Ex5_8.sce | 11 +++++++++++ 3720/CH5/EX5.9/Ex5_9.sce | 23 +++++++++++++++++++++++ 12 files changed, 210 insertions(+) create mode 100644 3720/CH5/EX5.1/Ex5_1.sce create mode 100644 3720/CH5/EX5.12/Ex5_12.sce create mode 100644 3720/CH5/EX5.13/Ex5_13.sce create mode 100644 3720/CH5/EX5.14/Ex5_14.sce create mode 100644 3720/CH5/EX5.15/Ex5_15.sce create mode 100644 3720/CH5/EX5.2/Ex5_2.sce create mode 100644 3720/CH5/EX5.3/Ex5_3.sce create mode 100644 3720/CH5/EX5.5/Ex5_5.sce create mode 100644 3720/CH5/EX5.6/Ex5_6.sce create mode 100644 3720/CH5/EX5.7/Ex5_7.sce create mode 100644 3720/CH5/EX5.8/Ex5_8.sce create mode 100644 3720/CH5/EX5.9/Ex5_9.sce (limited to '3720/CH5') diff --git a/3720/CH5/EX5.1/Ex5_1.sce b/3720/CH5/EX5.1/Ex5_1.sce new file mode 100644 index 000000000..ea27ff59f --- /dev/null +++ b/3720/CH5/EX5.1/Ex5_1.sce @@ -0,0 +1,20 @@ +//Example 5_1 +clc;clear;funcprot(0); +// Given values +V=10; // Volume of water in gallon +dt=50;// Time in seconds +rho=1;//The density of water in kg/L +r_e=0.4;// Radius of nozzle at exit in cm + +// Calculation (a) +v=V/dt; // Volume flow rate in L/s +v=v*3.7854;// Convert gal into L +printf('(a)The volume flow rate of water,v=%0.3f L/s\n',v); +m=rho*v;// Mass flow rate of water in kg/s +printf('The mass flow rate of water,m=%0.3f kg/s\n',m); + +// Calculation (b) +A_e=%pi*r_e^2;// The cross sectional area of nozzle at exit in cm^2 +V_e=v/A_e; +V_e=(V_e*10000/1000);// Convert to m/s +printf('(b)The average velocity of water at the nozzle exit,V_e=%0.1f m/s\n',V_e); diff --git a/3720/CH5/EX5.12/Ex5_12.sce b/3720/CH5/EX5.12/Ex5_12.sce new file mode 100644 index 000000000..4b84d95ee --- /dev/null +++ b/3720/CH5/EX5.12/Ex5_12.sce @@ -0,0 +1,23 @@ +//Example 5_12 +clc;clear;funcprot(0); +// Given values +rho=1;//The density of water to be 1 kg/L = 1000 kg/m^3 +v=50;// The water flow rate through the pump in L/s +n_m=.90;//The efficiency of electric motor +W_e=15;//Power in kW; +P_1=100;// The pressure at the inlet of the pump in kPa +P_2=300;// The pressure at the outlet of the pump in kPa +rho_1=1000;//The density of water in kg/m^3 +c=4.18;// The specific heat in kJ/kg °C. + +// Calculation +// (a) +m=rho*v;//The mass flow rate of water through the pump in kg/s +W_p=n_m*W_e;//The mechanical (shaft) power delivers to the pump kW +dE_m=m*((P_2-P_1)/rho_1);//The increase in the mechanical energy of the fluid in kW +n_p=dE_m/W_p;// The mechanical efficiency of the pump +printf('(a)The mechanical efficiency of the pump,n_pump=%0.3f (or)%0.1f percentage \n',n_p,n_p*100); +//(b) +E_mloss=W_p-dE_m;// “lost” mechanical energy in kW +dT=E_mloss/(m*c);// °C +printf('(b)The temperature rise of water due to the mechanical inefficiency,dT=%0.3f degree Celsius\n',dT); diff --git a/3720/CH5/EX5.13/Ex5_13.sce b/3720/CH5/EX5.13/Ex5_13.sce new file mode 100644 index 000000000..6ace2d325 --- /dev/null +++ b/3720/CH5/EX5.13/Ex5_13.sce @@ -0,0 +1,16 @@ +//Example 5_13 +clc;clear; +// Given values +rho=1000;// the density of water in kg/m^3 +v=100;//Flow rate of water in kg/m^3 +z_1=120;// m +h_l=35;// m +n_t=0.8; +g=9.81;// The acceleration due to gravity in m/s^2 + +// Calculation +m=rho*v;//The mass flow rate of water in kg/s +h_t=z_1-h_l;// m +W_t=(m*g*h_t)/1000;// kW +W_e=(n_t*(W_t/1000));// MW +printf('The electric power generated by the actual unit=%0.1f MW\n',W_e); diff --git a/3720/CH5/EX5.14/Ex5_14.sce b/3720/CH5/EX5.14/Ex5_14.sce new file mode 100644 index 000000000..4894d34b0 --- /dev/null +++ b/3720/CH5/EX5.14/Ex5_14.sce @@ -0,0 +1,24 @@ +//Example 5_14 +clc;clear;funcprot(0); +// Given values +rho=1.20;//The density of air in kg/m^3 +alpha_2=1.10; +dt=1;// s +D=0.05;// Diameter in m +n_f=0.3;// Efficiency of fan motor + +// Calculation +//(a) +V=0.5*(12*40*40);//The air volume in the computer case in cm^3 +V=V/10^6;// cm^3 to m^3 +v=V/dt;//The volume flow rate of air through the case in m^3/s +m=rho*V;//The mass flow rate of air through the case in kg/s +A=(%pi*D^2)/4;// m^2 +V_1=v/A;//m/s +W_fan=m*alpha_2*(V_1^2/2); +W_e=W_fan/n_f;//Electric power input to the fan in W +printf('(a)Electric power input to the fan,W_elect=%0.3f W\n',W_e); +//(b) +dP=(rho*W_fan)/m;//dp=P_4-P_3 +printf('(b)The pressure rise across the fan is %0.1f Pa.\n',dP); +//The answer is bit different due to round off error in the book diff --git a/3720/CH5/EX5.15/Ex5_15.sce b/3720/CH5/EX5.15/Ex5_15.sce new file mode 100644 index 000000000..4b0356227 --- /dev/null +++ b/3720/CH5/EX5.15/Ex5_15.sce @@ -0,0 +1,16 @@ +//Example 5_15 +clc;clear;funcprot(0); +// Properties +rho=1000;//The density of water in kg/m^3 +// Given values +v=0.03;//The flow rate of water in m^3/s +W_p=20;// kW +g=9.81;//The acceleration due to gravity in m/s^2 +z_2=45;// m + +// Calculation +m=rho*v;//The mass flow rate of water through the system in kg/s +E_ml=(W_p-(m*g*z_2)/1000); +printf('The lost mechanical power,E_mechloss=%0.2f kW\n',E_ml); +h_l=E_ml*1000/(m*g); +printf('The irreversible head loss,h_L=%0.1f m\n',h_l); diff --git a/3720/CH5/EX5.2/Ex5_2.sce b/3720/CH5/EX5.2/Ex5_2.sce new file mode 100644 index 000000000..b9acd38c6 --- /dev/null +++ b/3720/CH5/EX5.2/Ex5_2.sce @@ -0,0 +1,13 @@ +//Example 5_2 +clc;clear;funcprot(0); +// Given values +h_0=4; +h_2=2;// Corresponding heights in ft +D_tank=3*12; +D_jet=0.5;// Corresponding diameters in inch +g=32.2;// The acceleration due to gravity in ft/s^2 + +// Calculation +t=((sqrt(h_0)-sqrt(h_2))/sqrt(g/2))*((D_tank/D_jet)^2); +t=t/60;// Convert seconds to minutes +printf('The time of discharge,t=%0.1f min\n',t); diff --git a/3720/CH5/EX5.3/Ex5_3.sce b/3720/CH5/EX5.3/Ex5_3.sce new file mode 100644 index 000000000..6a23fea28 --- /dev/null +++ b/3720/CH5/EX5.3/Ex5_3.sce @@ -0,0 +1,24 @@ +//Example 5_3 +clc;clear;funcprot(0); +// Given values +m=5000;// Mass flow rate of water in kg/s +W_eout=1862;//The electric power generated is measured in kW +rho=1000;// The density of water in kg/m^3 +h=50;// The depth of the water in m +g=9.81;// m/s^2 +e_min=g*h;// kJ/kg +e_mout=0;// kJ/kg +n_gen=0.95;// The generator efficiency + +// Calculation +//(a) +dE_mech=(m*(e_min-e_mout))/1000;//kW +n_o=(W_eout/dE_mech);// The over all efficiency +printf('(a)The over all efficiency,n_o=%0.2f\n',n_o); +//(b) +n_t=n_o/n_gen;// )The mechanical efficiency of the turbine +printf('(b)The mechanical efficiency of the turbine,n_t=%0.2f\n',n_t); +//(c) +W_sout=n_t*dE_mech;// kW +printf('(c)The shaft power output,W_shaft,out=%0.0f kW\n',W_sout); +//The answer is a bit different due to rounding off error in textbook diff --git a/3720/CH5/EX5.5/Ex5_5.sce b/3720/CH5/EX5.5/Ex5_5.sce new file mode 100644 index 000000000..0d23a597e --- /dev/null +++ b/3720/CH5/EX5.5/Ex5_5.sce @@ -0,0 +1,10 @@ +// Example 5_5 +clc;clear; +// given values +P_gage=400;// kPa +rho=1000;// the density of water in kg/m^3 +g=9.81;// the accleration due to gravity in m/s^2 + +// Calculation +z_2=P_gage*1000/(rho*g);// m +printf('The water jet can rise as high,z_2=%0.1f m\n',z_2); diff --git a/3720/CH5/EX5.6/Ex5_6.sce b/3720/CH5/EX5.6/Ex5_6.sce new file mode 100644 index 000000000..17c9147d2 --- /dev/null +++ b/3720/CH5/EX5.6/Ex5_6.sce @@ -0,0 +1,9 @@ +// Example 5_6 +clc;clear;funcprot(0); +// Given values +z_1=5;// m +g=9.81;// The acceleration due to gravity in m/s^2 + +// Calculation +V_2=sqrt(2*g*z_1);// Toricelli equation +printf('The water leaves the tank with an initial velocity,V_2=%0.1f m/s\n',V_2); diff --git a/3720/CH5/EX5.7/Ex5_7.sce b/3720/CH5/EX5.7/Ex5_7.sce new file mode 100644 index 000000000..caed91990 --- /dev/null +++ b/3720/CH5/EX5.7/Ex5_7.sce @@ -0,0 +1,21 @@ +// Example 5_7 +clc;clear;funcprot(0); +// Given values +P_atm=101.3;// The atmospheric pressure in kPa; +rho=750;//The density of gasoline in kg/m^3 +g=9.81;//m/s^2 +z_1=0.75;// m +z_3=2.75;// m +D=(5/1000);// m + +// Calculation +//(a) +V_2=sqrt(2*g*z_1); +A=(%pi*D^2)/4;//The cross-sectional area of the tube in m^2 +v=V_2*A*1000;//The flow rate of gasoline in L/s +V=4;// Volume of gasoline in litre +gradt=V/v; +printf('(a)The time needed to siphon 4 L of gasoline from the tank,gradt=%0.1f s\n',gradt); +//(b) +P_3=P_atm-((rho*g*z_3)/1000);// kPa +printf('(b)The pressure at point 3,P_3=%0.1f kPa\n',P_3); diff --git a/3720/CH5/EX5.8/Ex5_8.sce b/3720/CH5/EX5.8/Ex5_8.sce new file mode 100644 index 000000000..0aa769523 --- /dev/null +++ b/3720/CH5/EX5.8/Ex5_8.sce @@ -0,0 +1,11 @@ +//Example 5_8 +clc;clear;funcprot(0); +// Given values +h_1=0.03;// m +h_2=0.07;// m +h_3=0.12;// m +g=9.81;//m/s^2 + +//Calculation +V_1=sqrt(2*g*h_3);// m/s +printf('The velocity at the center of the pipe,V_1=%0.2f m/s\n',V_1); diff --git a/3720/CH5/EX5.9/Ex5_9.sce b/3720/CH5/EX5.9/Ex5_9.sce new file mode 100644 index 000000000..d759e75bd --- /dev/null +++ b/3720/CH5/EX5.9/Ex5_9.sce @@ -0,0 +1,23 @@ +//Example 5_9 +clc;clear;funcprot(0); +// Given values +rho_hg=848;//The density of mercury in lbm/ft^3 +rho_sw=64;//The density of seawater in lbm/ft^3 +rho_atm=0.076;//The density of atmosphereic air in lbf/ft^3 +H_hg=(30-22);// inch +V_a=155;//mph +V_a=155*1.4667;// convert mph into ft/s +P_air=22;// The hurricane atmospheric pressure at the eye of the storm is in Hg +P_atm=30;// in hg +g=32.2;// ft/s^2 + +// Calculation +//(a) +h_1=((rho_hg/rho_sw)*H_hg)/12; +printf('(a)The pressure difference between points 1 and 3 in terms of the seawater column height,h_1=%0.2f ft\n',h_1); +//(b) +H_air=((V_a^2)/(2*g));//ft +rho_air=(P_air/P_atm)*rho_atm;//the density of air in the hurricane in lbm/ft^3 +h_dynamic=(rho_air/rho_sw)*H_air;//ft +h_2=h_1+h_dynamic;//ft +printf('(b)The total storm surge at point 2,h_2=%0.2f ft\n',h_2); -- cgit