From 7f60ea012dd2524dae921a2a35adbf7ef21f2bb6 Mon Sep 17 00:00:00 2001 From: prashantsinalkar Date: Tue, 10 Oct 2017 12:27:19 +0530 Subject: initial commit / add all books --- 3720/CH13/EX13.2/Ex13_2.sce | 24 ++++++++++++++++++++++++ 1 file changed, 24 insertions(+) create mode 100644 3720/CH13/EX13.2/Ex13_2.sce (limited to '3720/CH13/EX13.2/Ex13_2.sce') diff --git a/3720/CH13/EX13.2/Ex13_2.sce b/3720/CH13/EX13.2/Ex13_2.sce new file mode 100644 index 000000000..3a59e9904 --- /dev/null +++ b/3720/CH13/EX13.2/Ex13_2.sce @@ -0,0 +1,24 @@ +//Example 13_2 +clc;clear; +// Given values +b=0.8;// Width in m +y=0.52;// Flow depth in m +g=9.81;// m/s^2 +theta=60;// Trapezoid angle in degree +alpha=0.3;// Bottom slope angle +//Properties +n=0.030;// The Manning coefficient for an open channel with weedy surfaces + +//Calculation +A_c=(y*(b+(y/tand(theta))));//The cross-sectional area in m^2 +p=b+((2*y)/sind(theta));// Perimeter in m +R_h=A_c/p;// Hydraulic radius of the channel +S_0=tand(alpha);//The bottom slope of the channel +a=1;// m^(1/3)/s +v=(a/n)*(A_c*R_h^(2/3)*S_0^(1/2));// The flow rate through the channel in m^3/s +printf('The flow rate through the channel is determined from the Manning equation to be,v=%0.2f m^3/s\n',v); +//The flow rate for a bottom angle of 1° can be determined by using S_0= tan alpha=tan 1° +alpha_1=1;// degree +S_01=tand(alpha_1);// The bottom slope of the channel +v=(a/n)*(A_c*R_h^(2/3)*S_01^(1/2));// The flow rate through the channel in m^3/s +printf('The flow rate for a bottom angle of 1°,v=%0.1f m^3/s\n',v); -- cgit