From 7f60ea012dd2524dae921a2a35adbf7ef21f2bb6 Mon Sep 17 00:00:00 2001 From: prashantsinalkar Date: Tue, 10 Oct 2017 12:27:19 +0530 Subject: initial commit / add all books --- 3682/CH7/EX7.2/Ex7_2.sce | 36 ++++++++++++++++++++++++++++++++++++ 1 file changed, 36 insertions(+) create mode 100644 3682/CH7/EX7.2/Ex7_2.sce (limited to '3682/CH7/EX7.2') diff --git a/3682/CH7/EX7.2/Ex7_2.sce b/3682/CH7/EX7.2/Ex7_2.sce new file mode 100644 index 000000000..d1c1cd537 --- /dev/null +++ b/3682/CH7/EX7.2/Ex7_2.sce @@ -0,0 +1,36 @@ +// Exa 7.2 + +clc; +clear; + +// Given data + +n=4; // Fourth order Butterworth low-pass filter +fH=1000; // Hz + +// Solution + +printf('Let C = 0.1 μF. \n'); +C=0.1*10^-6; // Farads +// Since fH = 1/(2 * %pi * R*C); +// Therefore; +R = 1/(2*%pi*fH*C); +printf(' The calculated value of R = %.1f kΩ. \n',R/1000); + +printf(' From Table 7.1, for n=4, we get two damping factors namely,\n alpha1 = 0.765 and alpha2 = 1.848.'); +alpha1=0.765; +alpha2=1.848; +A01 = 3-alpha1; +A02 = 3-alpha2; +printf('\n'); +printf('\n Then the pass band gain A01 = %.3f and A02 = %.3f. \n',A01,A02); +printf('\n'); +printf(' The transfer function of the normalized second order low-pass Butterworth filter is 2.235 1.152 '); +printf('\n ---------------- * ------------------'); +printf('\n Sn^2+0.765*Sn+1 Sn^2+1.848*Sn+1 '); + +// Since A01= 1 + Rf/Ri = 1 + 1.235; +printf('\n Since A01= 2.235 so Let Rf1 = 12.35 kΩ and Ri1 = 10 kΩ to make A01 = 2.235.' ); +printf('\n Since A02= 1.152 so Let Rf2 = 15.20 kΩ and Ri1 = 100 kΩ to make A01 = 1.152.' ); + +printf(' \n The circiuit realized is as shown in Fig. 7.7 with component value as mentioned above.'); -- cgit