From 7f60ea012dd2524dae921a2a35adbf7ef21f2bb6 Mon Sep 17 00:00:00 2001 From: prashantsinalkar Date: Tue, 10 Oct 2017 12:27:19 +0530 Subject: initial commit / add all books --- 3682/CH4/EX4.3/Ex4_3.sce | 59 ++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 59 insertions(+) create mode 100644 3682/CH4/EX4.3/Ex4_3.sce (limited to '3682/CH4/EX4.3') diff --git a/3682/CH4/EX4.3/Ex4_3.sce b/3682/CH4/EX4.3/Ex4_3.sce new file mode 100644 index 000000000..28d325d92 --- /dev/null +++ b/3682/CH4/EX4.3/Ex4_3.sce @@ -0,0 +1,59 @@ +// Exa 4.3 + +clc; +clear; + +// Given data + +// An op-amp differentiator +fa = 100; // Hz +Vpp = 1; // Volts + +// Solution + +printf('Select, Fa = fmax = 100 Hz.\n'); +printf(' Let, C1 = 0.1 µF.\n'); +C1 = 0.1*10^-6; // Farads +// since Fa = 1/(2*%pi*Rf*C1); +// Therefore, +Rf = 1/(2*%pi*fa*C1); +printf(' Therefore, the calculated value of Rf = %.1f kΩ. \n',Rf/1000); + +printf(' Select, fb = 10*Fa = 1000 Hz.\n'); +fb = 1000; // Hz +// Therefore +R1 = 1/(2*%pi*fb*C1); +printf(' The calculated value of R1 = %.2f kΩ. \n',R1/1000); +// Since, RfCf = R1C1 +// Therefore we get, +Cf = R1*C1/Rf; +printf(' The calculated value of Cf = %.2f µF. \n',Cf*10^6); + +printf('\n\n For a sinusoidal input - \n\n'); +disp("since, vi = sin(2*%pi*100*t), "); +disp("From Eq. 4.69, vo = -Rf*C1* d/dt(vi), "); +disp("Above equation yield following result once solved- vo = -cos(2*%pi*100*t)."); +printf('\n The input and output waveforms are shown in Graphic window 0 ans 1 respectively. \n\n'); +// plotting wave forms + +t = [0:%pi:13*%pi]; +figure(0); + +a=gca(); // Handle on axes entity +a.x_location = "origin"; +a.y_location = "origin"; +plot2d(t,sin(2*%pi*100*t)); +title('Sine-wave-input',"color","Red","fontsize",3); +figure(1); + +a=gca(); // Handle on axes entity +a.x_location = "origin"; +a.y_location = "origin"; +plot2d(t,-cos(2*%pi*100*t)); +title('Cosine-wave-output',"color","blue","fontsize",3); + +printf('\n For a square wave input -\n\n'); +printf('\n For a square wave input, say 1 V peak and 1 KHz,\n The output waveform will consist of positive and negative spikes of magnitude Vsat\n which is approximately 13 V for ± 15 V op-amp power supply.\n\n'); +printf(' During the timeperiods for which input is constant at ± 1V, the differentiated output will be zero. \n However, when input transits between ±1V levels, \n the slope of the input is infinite for an ideal square wave. \n\n The output, therefore, gets clipped to about ± 13V for a ± 15 V op-amp power supply.'); + +printf('\n\n The output of a square wave input is a spike output as shown in Fig. 4.22(b). \n'); -- cgit