From 7f60ea012dd2524dae921a2a35adbf7ef21f2bb6 Mon Sep 17 00:00:00 2001 From: prashantsinalkar Date: Tue, 10 Oct 2017 12:27:19 +0530 Subject: initial commit / add all books --- 3682/CH2/EX2.12/Ex2_12.sce | 36 ++++++++++++++++++++++++++++++++++++ 1 file changed, 36 insertions(+) create mode 100644 3682/CH2/EX2.12/Ex2_12.sce (limited to '3682/CH2/EX2.12/Ex2_12.sce') diff --git a/3682/CH2/EX2.12/Ex2_12.sce b/3682/CH2/EX2.12/Ex2_12.sce new file mode 100644 index 000000000..322ec5837 --- /dev/null +++ b/3682/CH2/EX2.12/Ex2_12.sce @@ -0,0 +1,36 @@ +// Exa 2.12 + +clc; +clear; + +// Given data + +//Referring fig No. 2.21, we get + +Vcc=9; // Volts +Vbe=0.7; // Volts +R1=30*10^3; // Ω +Re=1.94; // Ω +B=125; // current gain +VT = 25*10^-3; // Volts + +// Solution + +Iref= (Vcc-Vbe)/R1; +printf(' The value of Iref = %.3f mA. \n ',Iref*1000); +// Also at Node A.- Iref=Ic+3*Ib. i.e Ic = Iref*(B/(B+2)) +// Assuming IB3 of widlar source negligible. +// Therefore putting back value of Iref we get values of Ic1 +Ic=Iref*(B/(B+3)); +Ic_mA = Ic*1000; // in mA + +printf('\n The value of Ic1 = Ic2 = %.3f mA. \n ',Ic*10^3); +// Calculating Ic3 using eqn 2.74 ; + +// Re = (VT/(Ic3*(1+1/B)))*ln(ic_mA/Ic3); +// Re - (VT/(Ic3*(1+1/B)))*ln(ic_mA/Ic3) = 0; + +deff('y = f(x)', 'y = (Re-(VT*log(Ic_mA/x))/(x*(1+1/B)))'); // here x = Ic3 +[x,v,info]= fsolve(0.01,f); + +printf(' \n By trial and error method, we get Ic3 = %.4f mA.\n',x); -- cgit