From 7f60ea012dd2524dae921a2a35adbf7ef21f2bb6 Mon Sep 17 00:00:00 2001 From: prashantsinalkar Date: Tue, 10 Oct 2017 12:27:19 +0530 Subject: initial commit / add all books --- 3681/CH3/EX3.1/Ans3_1.PNG | Bin 0 -> 4722 bytes 3681/CH3/EX3.1/Ex3_1.sce | 16 ++++++++++++++++ 3681/CH3/EX3.11/Ans3_11.PNG | Bin 0 -> 5382 bytes 3681/CH3/EX3.11/Ex3_11.sce | 16 ++++++++++++++++ 3681/CH3/EX3.12/Ans3_12.PNG | Bin 0 -> 6485 bytes 3681/CH3/EX3.12/Ex3_12.sce | 21 +++++++++++++++++++++ 3681/CH3/EX3.13/Ans3_13.PNG | Bin 0 -> 6181 bytes 3681/CH3/EX3.13/Ex3_13.sce | 19 +++++++++++++++++++ 3681/CH3/EX3.15/Ans3_15.PNG | Bin 0 -> 9505 bytes 3681/CH3/EX3.15/Ex3_15.sce | 28 ++++++++++++++++++++++++++++ 3681/CH3/EX3.2/Ans3_2.PNG | Bin 0 -> 4767 bytes 3681/CH3/EX3.2/Ex3_2.sce | 22 ++++++++++++++++++++++ 3681/CH3/EX3.3/Ans3_3.PNG | Bin 0 -> 5368 bytes 3681/CH3/EX3.3/Ex3_3.sce | 29 +++++++++++++++++++++++++++++ 3681/CH3/EX3.4/Ans3_4.PNG | Bin 0 -> 5887 bytes 3681/CH3/EX3.4/Ex3_4.sce | 28 ++++++++++++++++++++++++++++ 3681/CH3/EX3.7/Ans3_7.PNG | Bin 0 -> 5386 bytes 3681/CH3/EX3.7/Ex3_7.sce | 20 ++++++++++++++++++++ 3681/CH3/EX3.8/Ans3_8.PNG | Bin 0 -> 5467 bytes 3681/CH3/EX3.8/Ex3_8.sce | 19 +++++++++++++++++++ 20 files changed, 218 insertions(+) create mode 100644 3681/CH3/EX3.1/Ans3_1.PNG create mode 100644 3681/CH3/EX3.1/Ex3_1.sce create mode 100644 3681/CH3/EX3.11/Ans3_11.PNG create mode 100644 3681/CH3/EX3.11/Ex3_11.sce create mode 100644 3681/CH3/EX3.12/Ans3_12.PNG create mode 100644 3681/CH3/EX3.12/Ex3_12.sce create mode 100644 3681/CH3/EX3.13/Ans3_13.PNG create mode 100644 3681/CH3/EX3.13/Ex3_13.sce create mode 100644 3681/CH3/EX3.15/Ans3_15.PNG create mode 100644 3681/CH3/EX3.15/Ex3_15.sce create mode 100644 3681/CH3/EX3.2/Ans3_2.PNG create mode 100644 3681/CH3/EX3.2/Ex3_2.sce create mode 100644 3681/CH3/EX3.3/Ans3_3.PNG create mode 100644 3681/CH3/EX3.3/Ex3_3.sce create mode 100644 3681/CH3/EX3.4/Ans3_4.PNG create mode 100644 3681/CH3/EX3.4/Ex3_4.sce create mode 100644 3681/CH3/EX3.7/Ans3_7.PNG create mode 100644 3681/CH3/EX3.7/Ex3_7.sce create mode 100644 3681/CH3/EX3.8/Ans3_8.PNG create mode 100644 3681/CH3/EX3.8/Ex3_8.sce (limited to '3681/CH3') diff --git a/3681/CH3/EX3.1/Ans3_1.PNG b/3681/CH3/EX3.1/Ans3_1.PNG new file mode 100644 index 000000000..3c3bac712 Binary files /dev/null and b/3681/CH3/EX3.1/Ans3_1.PNG differ diff --git a/3681/CH3/EX3.1/Ex3_1.sce b/3681/CH3/EX3.1/Ex3_1.sce new file mode 100644 index 000000000..56cd7d9c8 --- /dev/null +++ b/3681/CH3/EX3.1/Ex3_1.sce @@ -0,0 +1,16 @@ +// Calculating effective length of air gap +clc; +disp('Example 3.1, Page No. = 3.12') +// Given Data +Ws = 12;// Slot width in mm +Wt = 12;// Tooth width in mm +lg = 2;// Length of air gap in mm +Kcs = 1/(1+(5*lg/Ws));//Carter's co-efficient for slots +// Calculation of effective length of air gap +ys=Ws+Wt;//Slot Pitch in mm +Kgs=ys/(ys-(Kcs*Ws));//Gap contraction for slots +Kgd=1;//Gap contracion factor for ducts//Since there are no ducts +Kg=Kgs*Kgd;//Total gap contracion factor +lgs=Kg*lg;//Effective gap length in mm +disp(lgs,'Effective gap length(mm)='); +//in book answer is 2.74 mm. The answers vary due to round off error diff --git a/3681/CH3/EX3.11/Ans3_11.PNG b/3681/CH3/EX3.11/Ans3_11.PNG new file mode 100644 index 000000000..988470971 Binary files /dev/null and b/3681/CH3/EX3.11/Ans3_11.PNG differ diff --git a/3681/CH3/EX3.11/Ex3_11.sce b/3681/CH3/EX3.11/Ex3_11.sce new file mode 100644 index 000000000..9f9d8a124 --- /dev/null +++ b/3681/CH3/EX3.11/Ex3_11.sce @@ -0,0 +1,16 @@ +// Calculating the specific iron loss +clc; +disp('Example 3.11, Page No. = 3.34') +// Given Data +Bm = 3.2;// Maximum flux density in Wb per meter square +f = 50;// Frequency in Hz +t = 0.5*10^(-3);// Thickness of sheet in mm +p = .3*10^(-6);// Resistivity of alloy steel in ohm*meter +D = 7.8*10^(3);// Density in kg per meter cube +ph_each = 400;// Hysteresis loss in each cycle in Joule per meter cube +// Calculation of total iron loss +pe = %pi*%pi*f*f*Bm*Bm*t*t/(6*p*D);// Eddy current loss in W per Kg +ph = ph_each*f/D;// Hysterseis loss in W per Kg +Pi = pe+ph;// Total iron loss in W per Kg +disp(Pi,'Specific iron loss(W per Kg)='); +//in book answer is 3.2 W per Kg. The provided in the textbook is wrong diff --git a/3681/CH3/EX3.12/Ans3_12.PNG b/3681/CH3/EX3.12/Ans3_12.PNG new file mode 100644 index 000000000..6e5250863 Binary files /dev/null and b/3681/CH3/EX3.12/Ans3_12.PNG differ diff --git a/3681/CH3/EX3.12/Ex3_12.sce b/3681/CH3/EX3.12/Ex3_12.sce new file mode 100644 index 000000000..8d64df9fa --- /dev/null +++ b/3681/CH3/EX3.12/Ex3_12.sce @@ -0,0 +1,21 @@ +// Calculating the specific iron loss +clc; +disp('Example 3.12, Page No. = 3.35') +// Given Data +Bm = 1.0;// Maximum flux density in Wb per meter square +f = 100;// Frequency in Hz +t = 0.3*10^(-3);// Thickness of sheet in mm +p = .5*10^(-6);// Resistivity of alloy steel in ohm*meter +D = 7650;// Density in kg per meter cube +pi_quoted = 1.2;// Quoted iron loss in W per Kg +// Calculation of total iron loss +S1 = 2*12;// Sides of hysteresis loop in A/m +S2 = 2*1;// Sides of hysteresis loop in Wb per meter square +A = S1*S2;// Area of hysteresis loop in W-s per meter cube +ph_each = A;// Hysteresis loss in each cycle in Joule per meter cube +ph = ph_each*f/D;// Hysterseis loss in W per Kg +pe = %pi*%pi*f*f*Bm*Bm*t*t/(6*p*D);// Eddy current loss in W per Kg +pi = pe+ph;// Total iron loss in W per Kg +disp(pi,'Specific iron loss(W per Kg)='); +disp('The calculated iron loss is smaller than the quoted.') +//in book answer is 1.014 W per Kg. The answers vary due to round off error diff --git a/3681/CH3/EX3.13/Ans3_13.PNG b/3681/CH3/EX3.13/Ans3_13.PNG new file mode 100644 index 000000000..997c16eff Binary files /dev/null and b/3681/CH3/EX3.13/Ans3_13.PNG differ diff --git a/3681/CH3/EX3.13/Ex3_13.sce b/3681/CH3/EX3.13/Ex3_13.sce new file mode 100644 index 000000000..be0189b29 --- /dev/null +++ b/3681/CH3/EX3.13/Ex3_13.sce @@ -0,0 +1,19 @@ +// Calculating the hysteresis loss +clc; +disp('Example 3.13, Page No. = 3.35') +// Given Data +Bm = 1.0;// Maximum flux density in Wb per meter square +f = 50;// Frequency in Hz +SGi = 7.5;// Specific gravity of iron +ph = 4.9;// Hysterseis loss in W per Kg +// Calculation of co-efficient 'n' +Di = 7500;// Density of iron +n = ph/(Di*f*(Bm^(1.7)));// +disp(n,'(a) co-efficient (n)='); +//in book answer is 1307*10^(-6). The answers vary due to round off error +// Calculation of hysteresis loss +Bm = 1.8;// Maximum flux density in Wb per meter square +f = 25;// Frequency in Hz +ph = n*f*Di*Bm^(1.7);// Hysterseis loss in W per Kg +disp(ph,'(b) Hysterseis loss(W per Kg)='); +//in book answer is 6.66 W per Kg. The answers vary due to round off error diff --git a/3681/CH3/EX3.15/Ans3_15.PNG b/3681/CH3/EX3.15/Ans3_15.PNG new file mode 100644 index 000000000..e30d422fe Binary files /dev/null and b/3681/CH3/EX3.15/Ans3_15.PNG differ diff --git a/3681/CH3/EX3.15/Ex3_15.sce b/3681/CH3/EX3.15/Ex3_15.sce new file mode 100644 index 000000000..8cbf2f11f --- /dev/null +++ b/3681/CH3/EX3.15/Ex3_15.sce @@ -0,0 +1,28 @@ +// Calculating the magnetic pull, unbalanced magnetic pull and ratio of unbalanced magnetic pull to useful force +clc; +disp('Example 3.15, Page No. = 3.71') +// Given Data +Power = 75000;// Power rating in W +f = 50;// Frequency in Hz +p = 2;// Number of poles +D = 0.5;// Stator bore in meter +L = 0.2;// Axial length of core in meter +lg = 5;// Length of air gap +ATm = 4500;// Peak magnetizing mmf per pole +Bm = ATm*4*%pi*10^(-7)/(lg*10^(-3));// Peak value of flux density in Wb per meter square +// Calculation of magnetic pull per pole +MP = Bm*Bm*D*L/(3*4*%pi*10^(-7));// Magnetic pull per pole (Flux Distribution is sinusoidal) +disp(MP,'(a) Magnetic pull per pole (N)='); +//in book answer is 33.9 in kN The answers vary due to round off error +// Calculation of unbalanced magnetic pull +e = 1;// Displacement of rotor axis in mm +Pp = %pi*D*L*Bm*Bm*e/(lg*4*4*%pi*10^(-7));// Unbalanced magnetic pull per pair of poles +disp(Pp,'(b) Unbalanced magnetic pull per pair of poles (N)='); +//in book answer is 16000 in N The answers vary due to round off error +// Calculation of Ratio of unbalanced magnetic pull to useful force +Speed = 2*f/p;// Speed in r.p.s. +T = Power/(2*%pi*Speed);// Useful torque in Nm +F = T/(D/2);// Useful force in N +Ratio = Pp/F;// Ratio of unbalanced magnetic pull to useful force +disp(Ratio,'(c) Ratio of unbalanced magnetic pull to useful force='); +//in book answer is 16.8 The answers vary due to round off error diff --git a/3681/CH3/EX3.2/Ans3_2.PNG b/3681/CH3/EX3.2/Ans3_2.PNG new file mode 100644 index 000000000..250a98a07 Binary files /dev/null and b/3681/CH3/EX3.2/Ans3_2.PNG differ diff --git a/3681/CH3/EX3.2/Ex3_2.sce b/3681/CH3/EX3.2/Ex3_2.sce new file mode 100644 index 000000000..7b462963a --- /dev/null +++ b/3681/CH3/EX3.2/Ex3_2.sce @@ -0,0 +1,22 @@ +// Calculating the mmf required for the air gap of a machine +clc; +disp('Example 3.2, Page No. = 3.12') +// Given Data +L = 0.32;// Core length in meter +nd = 4;// Number of ducts +Wd = 10;// Duct width in mm +Pa = 0.19;// Pole arc in meter +ys=65.4;//Slot Pitch in mm +lg = 5;// Length of air gap in mm +Wo = 5;// Slot opening in mm +Fpp = 52;// Flux per pole in mWb +Kcs = 0.18;//Carter's co-efficient for slots +Kcd = 0.28;//Carter's co-efficient for ducts +// Calculation of mmf required for the air gap +Kgs=ys/(ys-(Kcs*Wo));//Gap contraction for slots +Kgd=L/(L-(Kcd*nd*Wd*10^(-3)));//Gap contraction for ducts +Kg=Kgs*Kgd;//Total gap contracion factor +Bg=Fpp*10^(-3)/(Pa*L);//Flux density at the centre of pole in Wb per meter square +ATg=800000*Kg*Bg*lg*10^(-3);//mmf required for air gap in A +disp(ATg,'mmf required for air gap(A)='); +//in book answer is 3587 A. The answers vary due to round off error diff --git a/3681/CH3/EX3.3/Ans3_3.PNG b/3681/CH3/EX3.3/Ans3_3.PNG new file mode 100644 index 000000000..1a8131954 Binary files /dev/null and b/3681/CH3/EX3.3/Ans3_3.PNG differ diff --git a/3681/CH3/EX3.3/Ex3_3.sce b/3681/CH3/EX3.3/Ex3_3.sce new file mode 100644 index 000000000..0461e961a --- /dev/null +++ b/3681/CH3/EX3.3/Ex3_3.sce @@ -0,0 +1,29 @@ +// Estimating the effective air gap area per pole +clc; +disp('Example 3.3, Page No. = 3.13') +// Given Data +P = 10;// Number of pole +Sb = 0.65;// Stator bore in meter +L = 0.25;// Core length in meter +Nss = 90;// Number of stator slots +Wos = 3;// Stator slot opening in mm +Nrs = 120;// Number of rotor slots +Wor = 3;// Rotor slot opening in mm +lg = 0.95;// Length of air gap in mm +Kcs = 0.46;//Carter's co-efficient for slots +Kcd = 0.68;//Carter's co-efficient for ducts +nd = 3;// Number of ventilating ducts +Wd = 10;// Width of each ventilating Duct in mm +// Estimation of effective air gap area per pole +ys = 3.141592654*Sb*10^(3)/Nss;// Stator slot pitch +Kgss=ys/(ys-(Kcs*Wos));//Gap contraction factor for stator slots +Rd = Sb-2*lg*10^(-3);// Rotor diameter in meter +yr = 3.141592654*Rd*10^(3)/Nrs;// Rotor slot pitch +Kgsr=yr/(yr-(Kcs*Wor));//Gap contraction factor for rotor slots +Kgs=Kgss*Kgsr;//Gap contraction factor for slots +Kgd=L*10^(3)/(L*10^(3)-(Kcd*nd*Wd));//Gap contraction for ducts +Kg=Kgs*Kgd;//Total gap contracion factor +Ag = 3.141592654*Sb*L/P;// Actual area of air gap per pole in meter square +Age = Ag/Kg;// Effective air gap area per pole in meter square +disp(Age,'Effective air gap area per pole(meter square)='); +//in book answer is .04052 A. The answers vary due to round off error diff --git a/3681/CH3/EX3.4/Ans3_4.PNG b/3681/CH3/EX3.4/Ans3_4.PNG new file mode 100644 index 000000000..885c591b7 Binary files /dev/null and b/3681/CH3/EX3.4/Ans3_4.PNG differ diff --git a/3681/CH3/EX3.4/Ex3_4.sce b/3681/CH3/EX3.4/Ex3_4.sce new file mode 100644 index 000000000..999571179 --- /dev/null +++ b/3681/CH3/EX3.4/Ex3_4.sce @@ -0,0 +1,28 @@ +// Estimating the average flux density in the air gap +clc; +disp('Example 3.4, Page No. = 3.14') +// Given Data +MVA = 172;// MVA rating +P = 20;// Number of pole +D = 6.5;// Diameter in meter +L = 1.72;// Core length in meter +ys = 64;//Slot Pitch in mm +Ws = 22;// Stator slot (open) width in mm +lg = 30;// Length of air gap in mm +nd = 41;// Number of ventilating ducts +Wd = 6;// Width of each ventilating Duct in mm +mmf = 27000// Total mmf per pole in A +Kf = 0.7;// Field form factor +// Estimation of effective air gap area per pole +y=Ws/(2*lg);//Ratio for slots +Kcs= (2/%pi)*(atan(y)-log10(sqrt(1+y^2))/y);//Carter's co-efficient for slots +Kgs=ys/(ys-(Kcs*Ws));//Gap contraction for slots +y=Wd/(2*lg);//Ratio for ducts +Kcd= (2/%pi)*(atan(y)-log10(sqrt(1+y^2))/y);//Carter's co-efficient for slots +Kgd=L*10^(3)/(L*10^(3)-(Kcd*nd*Wd));//Gap contraction for ducts +Kg=Kgs*Kgd;//Total gap expansion factor +ATg = 0.87*mmf;// The required for the air gap is 87% of the total mmf per pole in A +Bg = ATg/(800000*Kg*lg*10^(-3));// Maximum flux density in air gap in Wb per meter square +Bav= Kf*Bg;// Average flux density in air gap in Wb per meter square +disp(Bav,'Average flux density in air gap (Wb per meter square)='); +//in book answer is .615 Wb per meter square. The provided in the textbook is wrong diff --git a/3681/CH3/EX3.7/Ans3_7.PNG b/3681/CH3/EX3.7/Ans3_7.PNG new file mode 100644 index 000000000..b7866a133 Binary files /dev/null and b/3681/CH3/EX3.7/Ans3_7.PNG differ diff --git a/3681/CH3/EX3.7/Ex3_7.sce b/3681/CH3/EX3.7/Ex3_7.sce new file mode 100644 index 000000000..e16269b3d --- /dev/null +++ b/3681/CH3/EX3.7/Ex3_7.sce @@ -0,0 +1,20 @@ +// Calculating the apparent flux density +clc; +disp('Example 3.7, Page No. = 3.22') +// Given Data +Ws = 10;// Slot width in mm +Wt = 12;// Tooth width in mm +L = .32;// Grass core Length in meter +nd = 4;// Number of ventilating ducts +Wd = 10;// Width of each ventilating Duct in mm +Breal = 2.2;// Real flux density in Wb per meter square +p = 31.4*10^(-6);// Permeability of teeth corresponding to real flux density in henry per meter +Ki = 0.9;// Stacking Factor +// Calculation of apparent flux density +at = Breal/p;// mmf per meter corresponding to real flux density and permeability +Li = Ki*(L-nd*Wd*10^(-3));// Net iron length +ys = Wt+Ws;// Slot pitch +Ks = L*ys/(Li*Wt); +Bapp = Breal+4*%pi*10^(-7)*at*(Ks-1); +disp(Bapp,'Apparent flux density(Wb per meter square)='); +//in book answer is 2.317 Wb per meter square. The answers vary due to round off error diff --git a/3681/CH3/EX3.8/Ans3_8.PNG b/3681/CH3/EX3.8/Ans3_8.PNG new file mode 100644 index 000000000..b73707728 Binary files /dev/null and b/3681/CH3/EX3.8/Ans3_8.PNG differ diff --git a/3681/CH3/EX3.8/Ex3_8.sce b/3681/CH3/EX3.8/Ex3_8.sce new file mode 100644 index 000000000..f3b988b8e --- /dev/null +++ b/3681/CH3/EX3.8/Ex3_8.sce @@ -0,0 +1,19 @@ +// Calculating the apparent flux density +clc; +disp('Example 3.8, Page No. = 3.23') +// Given Data +Ws = 10;// Slot width in mm +ys = 28;// Slot pitch in mm +L = .35;// Grass core Length in meter +nd = 4;// Number of ventilating ducts +Wd = 10;// Width of each ventilating Duct in mm +Breal = 2.15;// Real flux density in Wb per meter square +at = 55000;// mmf per meter corresponding to real flux density and permeability +Ki = 0.9;// Stacking Factor +// Calculation of apparent flux density +Li = Ki*(L-nd*Wd*10^(-3));// Net iron length +Wt = ys-Ws;// Tooth width in mm +Ks = L*ys/(Li*Wt); +Bapp = Breal+4*%pi*10^(-7)*at*(Ks-1); +disp(Bapp,'Apparent flux density(Wb per meter square)='); +//in book answer is 2.2156 Wb per meter square. The answers vary due to round off error -- cgit