From b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b Mon Sep 17 00:00:00 2001 From: priyanka Date: Wed, 24 Jun 2015 15:03:17 +0530 Subject: initial commit / add all books --- 3516/CH9/EX9.1/Ex9_1.sce | 109 +++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 109 insertions(+) create mode 100644 3516/CH9/EX9.1/Ex9_1.sce (limited to '3516/CH9/EX9.1') diff --git a/3516/CH9/EX9.1/Ex9_1.sce b/3516/CH9/EX9.1/Ex9_1.sce new file mode 100644 index 000000000..e0055f724 --- /dev/null +++ b/3516/CH9/EX9.1/Ex9_1.sce @@ -0,0 +1,109 @@ +printf("\t example 9.1 \n"); +printf("\t approximate values are mentioned in the book \n"); +T1=245; // inlet hot fluid,F +T2=95; // outlet hot fluid,F +t1=85; // inlet cold fluid,F +t2=95; // outlet cold fluid,F +W=9872; // lb/hr +w=78500; // lb/hr +printf("\t 1.for heat balance \n"); +printf("\t for ammonia gas \n"); +c=0.53; // Btu/(lb)*(F) +Q=((W)*(c)*(T1-T2)); // Btu/hr +printf("\t total heat required for ammonia gas is : %.2e Btu/hr \n",Q); +printf("\t for water \n"); +c=1; // Btu/(lb)*(F) +Q=((w)*(c)*(t2-t1)); // Btu/hr +printf("\t total heat required for water is : %.2f Btu/hr \n",Q); +delt1=T2-t1; //F +delt2=T1-t2; // F +printf("\t delt1 is : %.0f F \n",delt1); +printf("\t delt2 is : %.0f F \n",delt2); +LMTD=((delt2-delt1)/((2.3)*(log10(delt2/delt1)))); +printf("\t LMTD is :%.1f F \n",LMTD); +R=((T1-T2)/(t2-t1)); +printf("\t R is : %.0f \n",R); +S=((t2-t1)/(T1-t1)); +printf("\t S is : %.4f \n",S); +printf("\t FT is 0.837 \n"); // from fig 18 +delt=(0.837*LMTD); // F +printf("\t delt is : %.1f F \n",delt); +Tc=((T2)+(T1))/2; // caloric temperature of hot fluid,F +printf("\t caloric temperature of hot fluid is : %.0f F \n",Tc); +tc=((t1)+(t2))/2; // caloric temperature of cold fluid,F +printf("\t caloric temperature of cold fluid is : %.0f F \n",tc); +printf("\t hot fluid:shell side,ammonia at 83psia \n"); +ID=23.25; // in +C=0.1875; // clearance +B=12; // baffle spacing,in +PT=0.937; +as=((ID*C*B)/(144*PT)); // flow area,ft^2,from eq 7.1 +printf("\t flow area is : %.3f ft^2 \n",as); +Gs=(W/as); // mass velocity,lb/(hr)*(ft^2),from eq 7.2 +printf("\t mass velocity is : %.2e lb/(hr)*(ft^2) \n",Gs); +mu1=0.012*2.42; // at 170F,lb/(ft)*(hr), from fig.15 +De=0.55/12; // from fig.28,ft +Res=((De)*(Gs)/mu1); // reynolds number +printf("\t reynolds number is : %.2e \n",Res); +jH=118; // from fig.28 +k=0.017; // Btu/(hr)*(ft^2)*(F/ft),from table 5 +Z=0.97; // Z=(Pr*(1/3)) prandelt number +ho=((jH)*(k/De)*(Z)*1); // using eq.6.15,Btu/(hr)*(ft^2)*(F) +printf("\t individual heat transfer coefficient is : %.1f Btu/(hr)*(ft^2)*(F) \n",ho); +printf("\t cold fluid:inner tube side,water \n"); +Nt=364; +n=8; // number of passes +L=8; //ft +at1=0.302; // flow area, in^2,from table 10 +at=((Nt*at1)/(144*n)); // total area,ft^2,from eq.7.48 +printf("\t flow area is : %.4f ft^2 \n",at); +Gt=(w/(at)); // mass velocity,lb/(hr)*(ft^2) +printf("\t mass velocity is : %.2e lb/(hr)*(ft^2) \n",Gt); +V=(Gt/(3600*62.5)); // fps +printf("\t V is : %.2f fps \n",V); +mu2=0.82*2.42; // at 90F,lb/(ft)*(hr),from fig 14 +D=(0.62/12); // ft,from table 10 +Ret=((D)*(Gt)/mu2); // reynolds number +printf("\t reynolds number is : %.2e \n",Ret); +hi=900; // using fig 25,Btu/(hr)*(ft^2)*(F) +printf("\t hi is : %.0f Btu/(hr)*(ft^2)*(F) \n",hi); +ID=0.62; // ft +OD=0.75; //ft +hio=((hi)*(ID/OD)); // using eq.6.5 +printf("\t Correct hi0 to the surface at the OD is : %.0f Btu/(hr)*(ft^2)*(F) \n",hio); +Uc=((hio)*(ho)/(hio+ho)); // clean overall coefficient,Btu/(hr)*(ft^2)*(F) +printf("\t clean overall coefficient is : %.1f Btu/(hr)*(ft^2)*(F) \n",Uc); +A2=0.1963; // actual surface supplied for each tube,ft^2,from table 10 +A=(Nt*L*A2); // ft^2 +printf("\t total surface area is : %.0f ft^2 \n",A); +UD=((Q)/((A)*(delt))); +printf("\t actual design overall coefficient is : %.1f Btu/(hr)*(ft^2)*(F) \n",UD); +Rd=((Uc-UD)/((UD)*(Uc))); // (hr)*(ft^2)*(F)/Btu +printf("\t actual Rd is : %.3f (hr)*(ft^2)*(F)/Btu \n",Rd); +printf("\t pressure drop for annulus \n"); +f=0.00162; // friction factor for reynolds number 40200, using fig.29 +Ds=23.25/12; // ft +phys=1; +N=(12*L/B); // number of crosses,using eq.7.43 +printf("\t number of crosses are : %.0f \n",N); +rowgas=0.209; +printf("\t rowgas is %.3f lb/ft^3 \n",rowgas); +s=rowgas/62.5; +printf("\t s is %.5f \n",s); +delPs=((f*(Gs^2)*(Ds)*(N))/(5.22*(10^10)*(De)*(s)*(phys))); // using eq.7.44,psi +printf("\t delPs is : %.0f psi \n",delPs); +printf("\t allowable delPs is 2 psi \n"); +printf("\t pressure drop for inner pipe \n"); +f=0.000225; // friction factor for reynolds number 21400, using fig.26 +s=1; +D=0.0517; //ft +phyt=1; +delPt=((f*(Gt^2)*(L)*(n))/(5.22*(10^10)*(D)*(s)*(phyt))); // using eq.7.45,psi +printf("\t delPt is : %.1f psi \n",delPt); +X1=0.090; // X1=((V^2)/(2*g)), for Gt 1060000,using fig.27 +delPr=((4*n*X1)/(s)); // using eq.7.46,psi +printf("\t delPr is : %.1f psi \n",delPr); +delPT=delPt+delPr; // using eq.7.47,psi +printf("\t delPT is : %.1f psi \n",delPT); +printf("\t allowable delPT is 10 psi \n"); +//end -- cgit