From 7f60ea012dd2524dae921a2a35adbf7ef21f2bb6 Mon Sep 17 00:00:00 2001 From: prashantsinalkar Date: Tue, 10 Oct 2017 12:27:19 +0530 Subject: initial commit / add all books --- 3511/CH9/EX9.6/Ex9_6.sce | 29 +++++++++++++++++++++++++++++ 1 file changed, 29 insertions(+) create mode 100644 3511/CH9/EX9.6/Ex9_6.sce (limited to '3511/CH9/EX9.6/Ex9_6.sce') diff --git a/3511/CH9/EX9.6/Ex9_6.sce b/3511/CH9/EX9.6/Ex9_6.sce new file mode 100644 index 000000000..dfbb9325d --- /dev/null +++ b/3511/CH9/EX9.6/Ex9_6.sce @@ -0,0 +1,29 @@ +clc; +T1=290; // Temperature at inlet in kelvin +n=10; // Number of stages +rp=6.5; // Pressure ratio +m=3; // mass flow rate in kg/s +eff_C=0.9; // isentropic efficiency of the compression +ca=110; // Axial velocity in m/s +u=180; // Mean blade velocity in m/s +Cp=1.005; // Specific heat in kJ/kg K +r=1.4; // Specific heat ratio +R=287; // Characteristic gas constant in J/kg K + +T_2=(rp)^((r-1)/r)*T1; // temperature after isentropic compression +T2=((T_2-T1)/eff_C)+T1; // Temperature after actual compression +P=m*Cp*(T2-T1); // Power given to the air +Del_Tstage=(T2-T1)/n; // Temperature rise per stage +Del_ct=Cp*10^3*Del_Tstage/u; // For work done per kg of air per second +// To find blade angles let solve the following equations +// Del_ct=ca(tan beta_1-tan beta_2) for symmetrical stages +// u=ca(tan beta_1=tan beta_2) for degree of reaction = 0.5 +// Solving by matrix method +A=[1,-1;1,1]; C=[Del_ct/ca;u/ca]; +B=A\C; +// Blade angles at entry and exit +beta_1=atand(B(1)); +beta_2=atand(B(2)); + +disp ("kW (roundoff error)",P,"Power given to the air = "); +disp ("degree",beta_2,"Blade angle at exit = ","degree",beta_1,"Blade angle at inlet = "); -- cgit