From 7f60ea012dd2524dae921a2a35adbf7ef21f2bb6 Mon Sep 17 00:00:00 2001 From: prashantsinalkar Date: Tue, 10 Oct 2017 12:27:19 +0530 Subject: initial commit / add all books --- 3472/CH43/EX43.5/Example43_5.sce | 26 ++++++++++++++++++++++++++ 1 file changed, 26 insertions(+) create mode 100644 3472/CH43/EX43.5/Example43_5.sce (limited to '3472/CH43/EX43.5/Example43_5.sce') diff --git a/3472/CH43/EX43.5/Example43_5.sce b/3472/CH43/EX43.5/Example43_5.sce new file mode 100644 index 000000000..c20ad42d1 --- /dev/null +++ b/3472/CH43/EX43.5/Example43_5.sce @@ -0,0 +1,26 @@ +// A Texbook on POWER SYSTEM ENGINEERING +// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar +// DHANPAT RAI & Co. +// SECOND EDITION + +// PART IV : UTILIZATION AND TRACTION +// CHAPTER 5: ELECTRIC TRACTION-SPEED TIME CURVES AND MECHANICS OF TRAIN MOVEMENT + +// EXAMPLE : 5.5 : +// Page number 781-782 +clear ; clc ; close ; // Clear the work space and console + +// Given data +r = 1.0 // Tractive resistance(N/tonne) + +// Calculations +tractive_res_i = 0.278*r // Tractive resistance(N/tonne) = Energy consumption(Wh/tonne-km) +beta = 1/277.8 // Tractive resistance(N/tonne) = Retardation(km kmps/tonne) +energy = 98.1*1000/3600 // 1% gradient = energy(Wh per tonne km) + +// Results +disp("PART IV - EXAMPLE : 5.5 : SOLUTION :-") +printf("\nCase(i) : Tractive resistance of 1 N per tonne = %.3f Wh per tonne-km", tractive_res_i) +printf("\nCase(ii) : Tractive resistance of 1 N per tonne = %.5f km phps per tonne", beta) +printf("\nCase(iii): 1 percent gradient = %.2f Wh per tonne km\n", energy) +printf("\nNOTE: Slight change in the obtained answer from that of textbook is due to more precision here") -- cgit