From 7f60ea012dd2524dae921a2a35adbf7ef21f2bb6 Mon Sep 17 00:00:00 2001 From: prashantsinalkar Date: Tue, 10 Oct 2017 12:27:19 +0530 Subject: initial commit / add all books --- 3472/CH30/EX30.12/Example30_12.sce | 54 ++++++++++++++++++++++++++++++++++++++ 1 file changed, 54 insertions(+) create mode 100644 3472/CH30/EX30.12/Example30_12.sce (limited to '3472/CH30/EX30.12/Example30_12.sce') diff --git a/3472/CH30/EX30.12/Example30_12.sce b/3472/CH30/EX30.12/Example30_12.sce new file mode 100644 index 000000000..46d32187e --- /dev/null +++ b/3472/CH30/EX30.12/Example30_12.sce @@ -0,0 +1,54 @@ +// A Texbook on POWER SYSTEM ENGINEERING +// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar +// DHANPAT RAI & Co. +// SECOND EDITION + +// PART III : SWITCHGEAR AND PROTECTION +// CHAPTER 4: UNSYMMETRICAL FAULTS IN POWER SYSTEMS + +// EXAMPLE : 4.12 : +// Page number 521-522 +clear ; clc ; close ; // Clear the work space and console + +// Given data +MVA_A = 30.0 // Alternator rating(MVA) +kV_A = 6.6 // Alternator rating(kV) +X_G = 10.0 // Reactance of alternator(%) +kV_lv_T = 6.6 // Transformer lv side rating(kV) +kV_hv_T = 33.0 // Transformer hv side rating(kV) +X_T = 6.0 // Reactance of transformer(%) +kV_line = 33.0 // Transmission line voltage(kV) +X_line = 4.0 // Transmission line reactance(ohm) +X_g2 = 70.0 // Negative sequence reactance is 70% of +ve sequence reactance of generator(%) + +// Calculations +MVA_base = 30.0 // Base MVA +kV_base = 6.6 // Base kV +Z_base = kV_base**2/MVA_base // Base impedance(ohm) +Z_g1 = %i*Z_base*X_G/100 // Positive sequence impedance of alternator(ohm) +Z_T1 = %i*Z_base*X_T/100 // Positive sequence impedance of transformer(ohm) +Z_L1 = %i*(kV_base/kV_line)**2*X_line // Positive sequence impedance of transmission line(ohm) +Z_g2 = X_g2/100*Z_g1 // Negative sequence impedance of alternator(ohm) +Z_T2 = %i*Z_base*X_T/100 // Negative sequence impedance of transformer(ohm) +Z_T0 = %i*Z_base*X_T/100 // Zero sequence impedance of transformer(ohm) +Z_L2 = Z_L1 // Negative sequence impedance of transmission line(ohm) +Z_1 = Z_g1+Z_T1+Z_L1+Z_T1 // Positive sequence impedance(ohm) +Z_2 = Z_g2+Z_T2+Z_L2+Z_T2 // Negative sequence impedance(ohm) +Z_0 = Z_T0 // Zero sequence impedance(ohm) +E_a = kV_base*1000/3**0.5 // Base voltage(V) +// Case(a) +I_sc = E_a/Z_1 // Fault current if all 3 phases short circuited(A) +// Case(b) +I_a = 3*E_a/(Z_1+Z_2+Z_0) // Fault current if single line is grounded assuming 'a' to be grounded(A) +// Case(c) +I_b = %i*3**0.5*E_a/(Z_1+Z_2) // Fault current for a short circuit between two lines(A) +I_c = -%i*3**0.5*E_a/(Z_1+Z_2) // Fault current for a short circuit between two lines(A) + +// Results +disp("PART III - EXAMPLE : 4.12 : SOLUTION :-") +printf("\nCase(a): Fault current if all 3 phases short circuited, I_sc = %.f∠%.f° A", abs(I_sc),phasemag(I_sc)) +printf("\nCase(b): Fault current if single line is grounded, I_a = %.fj A", imag(I_a)) +printf("\nCase(c): Fault current for a short circuit between two lines, I_b = %.f A", real(I_b)) +printf("\n Fault current for a short circuit between two lines, I_c = %.f A\n", real(I_c)) +printf("\nNOTE: ERROR: (1).Calculation mistake in Z_2 in the textbook solution") +printf("\n (2).Transformer reactance is 6 percent, not 5 percent as in problem statement") -- cgit