From 7f60ea012dd2524dae921a2a35adbf7ef21f2bb6 Mon Sep 17 00:00:00 2001 From: prashantsinalkar Date: Tue, 10 Oct 2017 12:27:19 +0530 Subject: initial commit / add all books --- 3472/CH2/EX2.1/Example2_1.sce | 31 +++++++++++++++++++++++++++++++ 3472/CH2/EX2.2/Example2_2.sce | 32 ++++++++++++++++++++++++++++++++ 3472/CH2/EX2.3/Example2_3.sce | 39 +++++++++++++++++++++++++++++++++++++++ 3 files changed, 102 insertions(+) create mode 100644 3472/CH2/EX2.1/Example2_1.sce create mode 100644 3472/CH2/EX2.2/Example2_2.sce create mode 100644 3472/CH2/EX2.3/Example2_3.sce (limited to '3472/CH2') diff --git a/3472/CH2/EX2.1/Example2_1.sce b/3472/CH2/EX2.1/Example2_1.sce new file mode 100644 index 000000000..641f5335a --- /dev/null +++ b/3472/CH2/EX2.1/Example2_1.sce @@ -0,0 +1,31 @@ +// A Texbook on POWER SYSTEM ENGINEERING +// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar +// DHANPAT RAI & Co. +// SECOND EDITION + +// PART I : GENERATION +// CHAPTER 2: THERMAL STATIONS + +// EXAMPLE : 2.1 : +// Page number 25-26 +clear ; clc ; close ; // Clear the work space and console + +//Given data +M = 15000.0+10.0 // Water evaporated(kg) +C = 5000.0+5.0 // Coal consumption(kg) +time = 8.0 // Generation shift time(hours) + +//Calculations +//Case(a) +M1 = M-15000.0 +C1 = C-5000.0 +M_C = M1/C1 // Limiting value of water evaporation(kg) +//Case(b) +kWh = 0 // Station output at no load +consumption_noload = 5000+5*kWh // Coal consumption at no load(kg) +consumption_noload_hr = consumption_noload/time // Coal consumption per hour(kg) + +//Results +disp("PART I - EXAMPLE : 2.1 : SOLUTION :-") +printf("\nCase(a): Limiting value of water evaporation per kg of coal consumed, M/C = %.f kg", M_C) +printf("\nCase(b): Coal per hour for running station at no load = %.f kg\n", consumption_noload_hr) diff --git a/3472/CH2/EX2.2/Example2_2.sce b/3472/CH2/EX2.2/Example2_2.sce new file mode 100644 index 000000000..18ba2b484 --- /dev/null +++ b/3472/CH2/EX2.2/Example2_2.sce @@ -0,0 +1,32 @@ +// A Texbook on POWER SYSTEM ENGINEERING +// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar +// DHANPAT RAI & Co. +// SECOND EDITION + +// PART I : GENERATION +// CHAPTER 2: THERMAL STATIONS + +// EXAMPLE : 2.2 : +// Page number 26 +clear ; clc ; close ; // Clear the work space and console + +//Given data +amount = 25.0*10**5 // Amount spent in 1 year(Rs) +value_heat = 5000.0 // Heating value(kcal/kg) +cost = 500.0 // Cost of coal per ton(Rs) +n_ther = 0.35 // Thermal efficiency +n_elec = 0.9 // Electrical efficiency + +//Calculations +n = n_ther*n_elec // Overall efficiency +consumption = amount/cost*1000 // Coal consumption in 1 year(kg) +combustion = consumption*value_heat // Heat of combustion(kcal) +output = n*combustion // Heat output(kcal) +unit_gen = output/860.0 // Annual heat generated(kWh). 1 kWh = 860 kcal +hours_year = 365*24.0 // Total time in a year(hour) +load_average = unit_gen/hours_year // Average load on the power plant(kW) + +//Result +disp("PART I - EXAMPLE : 2.2 : SOLUTION :-") +printf("\nAverage load on power plant = %.2f kW\n", load_average) +printf("\nNOTE: ERROR: Calculation mistake in the final answer in the textbook") diff --git a/3472/CH2/EX2.3/Example2_3.sce b/3472/CH2/EX2.3/Example2_3.sce new file mode 100644 index 000000000..cd9d92df9 --- /dev/null +++ b/3472/CH2/EX2.3/Example2_3.sce @@ -0,0 +1,39 @@ +// A Texbook on POWER SYSTEM ENGINEERING +// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar +// DHANPAT RAI & Co. +// SECOND EDITION + +// PART I : GENERATION +// CHAPTER 2: THERMAL STATIONS + +// EXAMPLE : 2.3 : +// Page number 26 +clear ; clc ; close ; // Clear the work space and console + +//Given data +consumption = 0.5 // Coal consumption per kWh output(kg) +cal_value = 5000.0 // Calorific value(kcal/kg) +n_boiler = 0.8 // Boiler efficiency +n_elec = 0.9 // Electrical efficiency + +//Calculations +input_heat = consumption*cal_value // Heat input(kcal) +input_elec = input_heat/860.0 // Equivalent electrical energy(kWh). 1 kWh = 860 kcal +loss_boiler = input_elec*(1-n_boiler) // Boiler loss(kWh) +input_steam = input_elec-loss_boiler // Heat input to steam(kWh) +input_alter = 1/n_elec // Alternator input(kWh) +loss_alter = input_alter*(1-n_elec) // Alternate loss(kWh) +loss_turbine = input_steam-input_alter // Loss in turbine(kWh) +loss_total = loss_boiler+loss_alter+loss_turbine // Total loss(kWh) +output = 1.0 // Output(kWh) +Input = output+loss_total // Input(kWh) + +//Results +disp("PART I - EXAMPLE : 2.3 : SOLUTION :-") +printf("\nHeat Balance Sheet") +printf("\nLOSSES: Boiler loss = %.3f kWh", loss_boiler) +printf("\n Alternator loss = %.2f kWh", loss_alter) +printf("\n Turbine loss = %.3f kWh", loss_turbine) +printf("\n Total loss = %.2f kWh", loss_total) +printf("\nOUTPUT: %.1f kWh", output) +printf("\nINPUT: %.2f kWh\n", Input) -- cgit