From 7f60ea012dd2524dae921a2a35adbf7ef21f2bb6 Mon Sep 17 00:00:00 2001 From: prashantsinalkar Date: Tue, 10 Oct 2017 12:27:19 +0530 Subject: initial commit / add all books --- 3472/CH25/EX25.3/Example25_3.sce | 53 ++++++++++++++++++++++++++++++++++++++++ 1 file changed, 53 insertions(+) create mode 100644 3472/CH25/EX25.3/Example25_3.sce (limited to '3472/CH25/EX25.3') diff --git a/3472/CH25/EX25.3/Example25_3.sce b/3472/CH25/EX25.3/Example25_3.sce new file mode 100644 index 000000000..b1ccbba6c --- /dev/null +++ b/3472/CH25/EX25.3/Example25_3.sce @@ -0,0 +1,53 @@ +// A Texbook on POWER SYSTEM ENGINEERING +// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar +// DHANPAT RAI & Co. +// SECOND EDITION + +// PART II : TRANSMISSION AND DISTRIBUTION +// CHAPTER 18: POWER DISTRIBUTION SYSTEMS + +// EXAMPLE : 18.3 : +// Page number 438-439 +clear ; clc ; close ; // Clear the work space and console + +// Given data +l = 400.0 // Length of cable(m) +i = 1.0 // Load(A/m) +I_1 = 120.0 // Current at 40m from end A(A) +l_1 = 40.0 // Distance from end A(A) +I_2 = 72.0 // Current at 72m from end A(A) +l_2 = 120.0 // Distance from end A(A) +I_3 = 48.0 // Current at 200m from end A(A) +l_3 = 200.0 // Distance from end A(A) +I_4 = 120.0 // Current at 320m from end A(A) +l_4 = 320.0 // Distance from end A(A) +r = 0.15 // Cable resistance(ohm/km) +V_A = 250.0 // Voltage at end A(A) +V_B = 250.0 // Voltage at end A(A) + +// Calculations +I = poly(0,"I") // Current from end A(A) +A_A1 = l_1*r*(I-(1.0/2)*i*l_1) // Drop over length(V) +I_d_1 = 40.0 // Distributed tapped off current(A) +I_A1_A2 = I-l_1-l_2 // Current fed in over length(A) +A1_A2 = (l_2-l_1)*r*(I_A1_A2-(1.0/2)*i*(l_2-l_1)) // Drop over length(V) +I_d_2 = 80.0 // Distributed tapped off current(A) +I_A2_A3 = I_A1_A2-(I_2+I_d_2) // Current fed in over length(A) +A2_A3 = (l_3-l_2)*r*(I_A2_A3-(1.0/2)*i*(l_3-l_2)) // Drop over length(V) +I_d_3 = 80.0 // Distributed tapped off current(A) +I_A3_A4 = I_A2_A3-(I_3+I_d_3) // Current fed in over length(A) +A3_A4 = (l_4-l_3)*r*(I_A3_A4-(1.0/2)*i*(l_4-l_3)) // Drop over length(V) +I_d_4 = 120.0 // Distributed tapped off current(A) +I_A4_B = I_A3_A4-(I_4+I_d_4) // Current fed in over length(A) +A4_B = (l-l_4)*r*(I_A4_B-(1.0/2)*i*(l-l_4)) // Drop over length(V) +V_drop = A_A1+A1_A2+A2_A3+A3_A4+A4_B // Total voltage drop in terms of I +I = roots(V_drop) // Current(A) +I_total = 760.0 // Total load current(A) +I_B = I_total-I // Current from B(A) +A_A3 = 2.0*r/1000*(l_1*(I-20)+(l_2-l_1)*(I-200)+(l_3-l_2)*(I-352)) // Potential drop over length A_A3(V) +V_A3 = V_A-A_A3 // Voltage at the lowest run lamp(V) + +// Results +disp("PART II - EXAMPLE : 18.3 : SOLUTION :-") +printf("\nPosition of lowest-run lamp, A_3 = %.f m", l_3) +printf("\nVoltage at the lowest-run lamp = %.1f V", V_A3) -- cgit