From 7f60ea012dd2524dae921a2a35adbf7ef21f2bb6 Mon Sep 17 00:00:00 2001 From: prashantsinalkar Date: Tue, 10 Oct 2017 12:27:19 +0530 Subject: initial commit / add all books --- 3472/CH18/EX18.11/Example18_11.sce | 35 +++++++++++++++++++++++++++++++++++ 1 file changed, 35 insertions(+) create mode 100644 3472/CH18/EX18.11/Example18_11.sce (limited to '3472/CH18/EX18.11/Example18_11.sce') diff --git a/3472/CH18/EX18.11/Example18_11.sce b/3472/CH18/EX18.11/Example18_11.sce new file mode 100644 index 000000000..ba9b941c5 --- /dev/null +++ b/3472/CH18/EX18.11/Example18_11.sce @@ -0,0 +1,35 @@ +// A Texbook on POWER SYSTEM ENGINEERING +// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar +// DHANPAT RAI & Co. +// SECOND EDITION + +// PART II : TRANSMISSION AND DISTRIBUTION +// CHAPTER 11: LOAD FREQUENCY CONTROL AND LOAD SHARING OF POWER GENERATING SOURCES + +// EXAMPLE : 11.11 : +// Page number 337 +clear ; clc ; close ; // Clear the work space and console + +// Given data +P = 9.0 // Load supplied from substation(MW) +V = 33000.0 // Voltage(V) +PF_1 = 1.0 // Unity power factor +Z_A = complex(2.0,8.0) // Impedance of circuit A(ohm) +Z_B = complex(4.0,4.0) // Impedance of circuit B(ohm) + +// Calculations +V_ph = V/3**0.5 // Voltage at receiving end per phase(V) +P_A = 1.0/3*P // Power supplied by line A(MW) +P_B = 2.0/3*P // Power supplied by line B(MW) +I_A = P_A*10**6/(3**0.5*V) // Current through line A(A) +I_B = P_B*10**6/(3**0.5*V) // Current through line B(A) +IA_ZA_drop = I_A*Z_A // I_A Z_A drop(V/phase) +IB_ZB_drop = I_B*Z_B // I_B Z_B drop(V/phase) +phase_boost = real(IB_ZB_drop)-real(IA_ZA_drop) // Voltage in phase boost(V/phase) +quad_boost = imag(IB_ZB_drop)-imag(IA_ZA_drop) // Voltage in quadrature boost(V/phase) +constant_P = V_ph+IA_ZA_drop // Assumed that sending end voltage at P is kept constant(V/phase) + +// Results +disp("PART II - EXAMPLE : 11.11 : SOLUTION :-") +printf("\nVoltage in-phase boost = %.2f V/phase", phase_boost) +printf("\nVoltage in quadrature boost = %.f V/phase", quad_boost) -- cgit