From 7f60ea012dd2524dae921a2a35adbf7ef21f2bb6 Mon Sep 17 00:00:00 2001 From: prashantsinalkar Date: Tue, 10 Oct 2017 12:27:19 +0530 Subject: initial commit / add all books --- 3472/CH13/EX13.1/Example13_1.sce | 30 ++++++++++++++++++++++++ 3472/CH13/EX13.2/Example13_2.sce | 49 ++++++++++++++++++++++++++++++++++++++++ 2 files changed, 79 insertions(+) create mode 100644 3472/CH13/EX13.1/Example13_1.sce create mode 100644 3472/CH13/EX13.2/Example13_2.sce (limited to '3472/CH13') diff --git a/3472/CH13/EX13.1/Example13_1.sce b/3472/CH13/EX13.1/Example13_1.sce new file mode 100644 index 000000000..bb9ce56d4 --- /dev/null +++ b/3472/CH13/EX13.1/Example13_1.sce @@ -0,0 +1,30 @@ +// A Texbook on POWER SYSTEM ENGINEERING +// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar +// DHANPAT RAI & Co. +// SECOND EDITION + +// PART II : TRANSMISSION AND DISTRIBUTION +// CHAPTER 6: INTERFERENCE OF POWER LINES WITH NEIGHBOURING COMMUNICATION CIRCUITS + +// EXAMPLE : 6.1 : +// Page number 206 +clear ; clc ; close ; // Clear the work space and console + +// Given data +f = 50.0 // Frequency(Hz) +d = 4.0 // Spacing b/w conductors(m) +D = 2.0 // Distance of telephone line below conductor(m) +s = 60.0/100 // Spacing b/w telephone line(m) +r = 2.0 // Radius of power line(mm) +I = 150.0 // Current in power line(A) + +// Calculations +D_ac = (D**2+((d-s)/2)**2)**0.5 // Distance b/w a & c(m) +D_ad = (D**2+(((d-s)/2)+s)**2)**0.5 // Distance b/w a & d(m) +M = 4.0*10**-7*log(D_ad/D_ac)*1000 // Mutual inductance b/w circuits(H/km) +V_CD = 2.0*%pi*f*M*I // Voltage induced in the telephone line(V/km) + +// Results +disp("PART II - EXAMPLE : 6.1 : SOLUTION :-") +printf("\nMutual inductance between the circuits, M = %.e H/km", M) +printf("\nVoltage induced in the telephone line, V_CD = %.2f V/km", V_CD) diff --git a/3472/CH13/EX13.2/Example13_2.sce b/3472/CH13/EX13.2/Example13_2.sce new file mode 100644 index 000000000..56b32b5d2 --- /dev/null +++ b/3472/CH13/EX13.2/Example13_2.sce @@ -0,0 +1,49 @@ +// A Texbook on POWER SYSTEM ENGINEERING +// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar +// DHANPAT RAI & Co. +// SECOND EDITION + +// PART II : TRANSMISSION AND DISTRIBUTION +// CHAPTER 6: INTERFERENCE OF POWER LINES WITH NEIGHBOURING COMMUNICATION CIRCUITS + +// EXAMPLE : 6.2 : +// Page number 206-207 +clear ; clc ; close ; // Clear the work space and console + +// Given data +f = 50.0 // Frequency(Hz) +l = 160.0 // Length of line(km) +V = 132.0*10**3 // Line voltage(V) +P = 25.0*10**6 // Load delivered(W) +PF = 0.8 // Lagging power factor +r = 5.0/1000 // Radius of power line conductor(m) +d = 4.0 // Spacing b/w conductors(m) +OS = 6.0 // Distance(m) +OT = 6.5 // Distance(m) +CT = 18.0 // Distance(m) + +// Calculations +AO = 3**0.5*d/2.0 // Distance A to O(m). From figure E6.2 +AS = OS+AO // Distance A to S(m) +AT = AO+OT // Distance A to T(m) +OB = d/2.0 // Distance O to B(m) +BS = (OB**2+OS**2)**0.5 // Distance B to S(m) +BT = (OB**2+OT**2)**0.5 // Distance B to T(m) +M_A = 0.2*log(AT/AS) // Mutual inductance at A(mH/km) +M_B = 0.2*log(BT/BS) // Mutual inductance at B(mH/km) +M = M_B-M_A // Mutual inductance at C(mH/km) +I = P/(3**0.5*V*PF) // Current(A) +E_m = 2.0*%pi*f*M*I*10**-3*l // Induced voltage(V) +V_A = V/3**0.5 // Phase voltage(V) +h = AO+CT // Height(m) +V_SA = V_A*log10(((2*h)-AS)/AS)/log10(((2*h)-r)/r) // Potential(V) +H = CT // Height(m) +V_B = V_A // Phase voltage(V) +V_SB = V_B*log10(((2*H)-BS)/BS)/log10(((2*H)-r)/r) // Potential(V) +V_S = V_SB-V_SA // Total potential of S w.r.t earth(V) + +// Results +disp("PART II - EXAMPLE : 6.2 : SOLUTION :-") +printf("\nInduced voltage at fundamental frequency, E_m = %.1f V", E_m) +printf("\nPotential of telephone conductor S above earth, V_S = %.f V \n", V_S) +printf("\nNOTE: ERROR: Changes in obtained answer is due to precision and calculation mistakes in textbook") -- cgit